LEADER 03383nam 22006135 450 001 9910996490703321 005 20260204152639.0 010 $a3-031-85761-5 024 7 $a10.1007/978-3-031-85761-4 035 $a(CKB)38337906600041 035 $a(DE-He213)978-3-031-85761-4 035 $a(MiAaPQ)EBC32006592 035 $a(Au-PeEL)EBL32006592 035 $a(EXLCZ)9938337906600041 100 $a20250410d2025 u| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aLyapunov Stability of Transformation Semigroups /$fby Victor H. L. Rocha, Josiney A. Souza 205 $a1st ed. 2025. 210 1$aCham :$cSpringer Nature Switzerland :$cImprint: Springer,$d2025. 215 $a1 online resource (XVIII, 228 p. 14 illus.) 225 1 $aLatin American Mathematics Series,$x2524-6763 311 08$a3-031-85760-7 327 $aPreface -- Introduction -- Semigroup actions -- Attraction and Lyapunov stability -- Orbital maps -- Lyapunov stability on fiber bundles -- Fenichel?s uniformity lemma -- Stability and controllability -- Higher stability and generalized recurrence -- Fiber bundles -- References -- Index. 330 $aThis book presents recent research results on Lyapunov stability and attraction for semigroup actions in a pedagogical format, providing the reader with numerous modern ideas and mathematical formulations for dynamical concepts in the transformation group theory. In recent decades, many fundamental concepts of dynamical systems have been extended to the general framework of transformation semigroups. Limit sets, attractors, isolated invariant sets, prolongational limit sets, and stable sets now have semigroup theoretical analogues. This monograph consolidates recent advancements in this field in a way that makes it accessible to graduate students. An effort was made to relate the presented results to important recurrence notions, for contextual clarity. A rudimentary understanding of group theory and topology, including the concepts of semigroup action, orbit, fiber bundle, compactness, and connectedness, is a prerequisite for reading this text. As a valuable resource for research projects and academic dissertations on topological dynamics, geometry, and mathematical analysis, this work can potentially open new avenues for further research. 410 0$aLatin American Mathematics Series,$x2524-6763 606 $aDynamics 606 $aSystem theory 606 $aControl theory 606 $aDynamical Systems 606 $aSystems Theory, Control 606 $aGrups de transformacions$2thub 606 $aSemigrups$2thub 608 $aLlibres electrònics$2thub 615 0$aDynamics. 615 0$aSystem theory. 615 0$aControl theory. 615 14$aDynamical Systems. 615 24$aSystems Theory, Control. 615 7$aGrups de transformacions 615 7$aSemigrups 676 $a515.39 700 $aRocha$b Victor H. L$4aut$4http://id.loc.gov/vocabulary/relators/aut$01817587 702 $aSouza$b Josiney A$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910996490703321 996 $aLyapunov Stability of Transformation Semigroups$94375475 997 $aUNINA