LEADER 09929nam 2200637Ia 450 001 9910993973703321 005 20250415184314.0 010 $z9789814458979 010 $a9789814458986$b(electronic bk.) 010 $a9814458988 035 $a(MiAaPQ)EBC1275561 035 $a(Au-PeEL)EBL1275561 035 $a(CaPaEBR)ebr10731515 035 $a(CaONFJC)MIL502617 035 $a(OCoLC)851695140 035 $a(CKB)17692716800041 035 $a(EXLCZ)9917692716800041 100 $a20130226d2013 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aPolyoxometalate chemistry $esome recent trends /$feditor, Francis Secheresse 205 $a1st ed. 210 $aHackensack [NJ] $cWorld Scientific$dc2013 210 1$aNew Jersey :$cWorld Scientific,$d[2013] 210 4$d?2013 215 $a1 online resource (360 pages) 225 0 $aWorld Scientific series in nanoscience and nanotechnology ;$vv. 8 300 $aDescription based upon print version of record. 311 08$aPrint version: Secheresse, Francis Polyoxometalate Chemistry: Some Recent Trends Singapore : World Scientific Publishing Company,c2013 9789814458979 311 08$a981445897X 311 08$a9781299713666 311 08$a1299713661 320 $aIncludes bibliographical references and index. 320 $aIncludes bibliographical references. 327 $aIntro -- CONTENTS -- Preface -- List of Color Plates -- COLOR PLATE 1 -- COLOR PLATE 2 -- COLOR PLATE 3 -- COLOR PLATE 4 -- COLOR PLATE 5 -- COLOR PLATE 6 -- COLOR PLATE 7 -- COLOR PLATE 8 -- COLOR PLATE 9 -- COLOR PLATE 10 -- COLOR PLATE 11 -- COLOR PLATE 12 -- COLOR PLATE 13 -- COLOR PLATE 14 -- COLOR PLATE 15 -- COLOR PLATE 16 -- COLOR PLATE 17 -- COLOR PLATE 18 -- COLOR PLATE 19 -- COLOR PLATE 20 -- COLOR PLATE 21 -- COLOR PLATE 22 -- COLOR PLATE 23 -- COLOR PLATE 24 -- COLOR PLATE 25 -- COLOR PLATE 26 -- COLOR PLATE 27 -- COLOR PLATE 28 -- COLOR PLATE 29 -- COLOR PLATE 30 -- COLOR PLATE 31 -- COLOR PLATE 32 -- COLOR PLATE 33 -- COLOR PLATE 34 -- COLOR PLATE 35 -- COLOR PLATE 36 -- Chapter 1 Polyoxometalate-Protected Metal Nanoparticles: Synthesis, Structure and Catalysis Yifeng Wang and Ira A. Weinstock -- 1. Introduction -- 2. Synthesis of Polyoxometalate Stabilized Metal(0) Nanoparticles -- 2.1. Control over shape and size -- 2.2. Ir and Ru nanoparticles by H2 reduction -- 2.3. Reactions of metal salts with reduced polyoxometalate anions -- 2.3.1. Synthesis of nanoparticles -- 2.3.2 Synthesis of complex nanostructures -- 2.4. Ligand-exchange reactions -- 3. Structures of Inorganic Cluster Anions Stabilized Nanoparticles -- 3.1. Evidence for the stabilization of metal(0) nanoparticles by polyoxometalates -- 3.2. Direct imaging of POM-ligand monolayers by cryo-TEM -- 3.3. Electric double layer of a polyoxometalate-stabilized nanoparticle -- 4. Application of POM-stabilized Au NPs in Catalysis -- 4.1. Hydrogenation reactions using POM-stabilized metal NPs -- 4.2. Molecular oxygen activation reactions for organic synthesis -- 4.3. Other organic reactions catalyzed by polyoxometalate-stabilized metal nanoparticles -- 4.4. Electrocatalysis -- 5. Closing Comments -- References. 327 $aChapter 2 When Giants Meet Dwarves in the Same Pond - Unique Solution Physical Chemistry Opportunities Offered by Polyoxometalate Macroions Dong Li, Panchao Yin and Tianbo Liu -- 1. Introduction and Retrospection -- 1.1. Derivation of the Debye-Hückel's limiting theory5 -- 1.2. General features of the DLVO theory -- 1.2.1. DLVO potential and the primary and secondary minima -- 1.2.2. Limitations of the DLVO theory -- 2. Characterization of Macroion Solution Behaviors -- 2.1. Polyoxometalates (POMs) type macroanions -- 2.1.1. Characterization of the self-assembly of POM macroanions in dilute solutions -- 2.1.2. The driving forces that responsible for the unexpected self-assembly of macroanions -- 2.1.2.1. Van der Waals attractions -- 2.1.2.2. Hydrogen bonding -- 2.1.2.3. Counterions mediated attractions -- a) Interactions between discrete macroions and counterions -- b) Effect of surface charge density -- c) Effect of counterion valence state and counterion hydrated size -- d) Effect of ionic strength -- 2.1.2.4. Solvent effect -- 2.1.3. Kinetics of the blackberry formation -- 2.1.3.1. Long equilibrium time -- 2.1.3.2. High activation energy -- 2.1.3.3. Slow nucleation and fast aggregation -- 2.2. Self-assembly of macrocations -- 3. Connection to Virus Capsid Formation -- 3.1. Trans-membrane transport of counterions over blackberry surface -- 4. Inorganic-Organic Hybrid POMs -- 4.1. The motivation of synthesizing new hybrid POMs -- 4.2. POMs based amphiphilic surfactants and their assemblies -- 4.2.1. Diblock hybrid surfactants -- 4.2.2. Triblock hybrid surfactants -- 4.2.2.1. Organic-inorganic-organic type hybrid surfactants -- 4.2.2.2. Inorganic-organic-inorganic type hybrid surfactants -- 4.2.3. Comparison with blackberries -- 5. Conclusions -- Acknowledgement -- References. 327 $aChapter 3 Directed Assembly of Polyoxometalates Across Length Scales: From Macro-Molecules to Microsystems and iChells Antoine G. Boulay, Geoffrey J. T. Cooper and Leroy Cronin -- 1. Building Blocks to Cation Control -- 1.1. Background -- 1.2. Isopolyoxometalates and their derivatives -- 2. Host-Guest Chemistry to Networks -- 2.1. Cage compounds and switchable POMs -- 2.2. POM based architectures and framework materials -- 2.3. Organic-inorganic hybrids POMs -- 3. Extended Architectures Based on Transition Metal Salts/Oxides: Tubes, iChells and Blackberries -- 3.1. Tubular systems: Mechanism of formation -- 3.2. Particular tubes/minimal systems -- 3.3. Growth control -- 3.4. Formation of inorganic-chemical cells: iCHELLs -- 3.5. iCHELL chemistry -- 4. Conclusions -- Acknowledgements -- References -- Chapter 4 Magnetic Polyoxometalates Juan M. Clemente-Juan, Eugenio Coronado and Alejandro Gaita-Ariño -- 1. Introduction -- 2. Spin Clusters -- 3. Single-molecule Magnets -- 4. Mixed-valence Clusters -- 5. Conclusions -- Acknowledgements -- References -- Chapter 5 Magnetism of Keplerates Paul Kögerler -- 1. Introduction -- 2. From Pentagonal Building Blocks to Keplerates -- 3. The {Mo72Fe30} System: From Classical to Quantum Spin Models -- 4. The Quantum-spin Keplerates {Mo72V30} and {Mo72Cr30} -- References -- Chapter 6 Polyoxometalates as Ligands for Functional Lanthanoid Complexes Chris Ritchie and Colette Boskovic -- 1. Introduction -- 2. Synthesis and Structures -- 2.1. Ln-POMs and Ln-org-POMs synthesized in the presence of acetate -- 2.2. Ln-org-POMs synthesized in the presence of glycine -- 2.3. Ln-org-POMs synthesized in the presence of 2-picolinate -- 3. Magnetic Properties -- 4. Luminescence Properties -- 5. Concluding Remarks -- Acknowledgements -- References -- Chapter 7 Polyoxothiometalates POTM Francis Sécheresse and Emmanuel Cadot. 327 $a1. Introduction -- 1.1. Thiometalates -- 2. Polyoxothiometalates POTM -- 2.1. The choice of a precursor -- 2.1.1. [Mo2O2S2]2+ a promising precursor -- 2.1.2. [Mo3S4] 4+ a possible building block for the coordination to vacant POMs -- 2.2. Self-condensation of the {Mo2O2S2}2+ precursor -- 2.3. Condensations via inorganic assembling groups -- 2.3.1. Halides as templates -- 2.3.2. Examples of other weak bases acting as templating groups -- 2.3.2.1. Dynamics associated to phosphate template effect -- 2.3.2.2. Rings based on phosphate anions -- 2.4. POTM derived from organic templates -- 2.4.1. Ring design with carboxylate and dicarboxylates -- 2.4.2. Adaptability and stability of host-guest rings -- 2.4.2.1. Example of C6, C7, and C8 based rings -- 2.4.2.2. Intrinsic stability -- 2.4.3. Example of dynamic associated to dicarboxylate templating -- 2.4.4. DOSY NMR methods applied to host-guest rings -- 3. Polyoxothiometalates Derived from the Archetypal Keggin Structure -- 3.1. Functionalization of polyvacant polyoxometalates -- 3.1.1. Example of [?-SiW10O36]8- -- 3.1.2. Examples of the monovacant Keggin ?-[PW11O39]7- and Dawson [P2W17O61]10- -- 3.1.3 Trivacant polyoxometalates as ligands -- 3.1.3.1. Reaction of {M2O2S2} with [A-?-PW9O34]9- -- 3.1.3.2. Reaction of {M2O2S2} with [B-P2W15O56]12- -- 3.1.3.3. Reaction of {M2O2S2} with [A-?-AsW9O33]9- -- 3.1.4. Tetravacant-trivacant POMs conversion induced by {Mo2O2S2} coordination -- 4. [Mo2O2S2(OH2)2}2+ a Building Block Involved in Mo- and W-giant Capsules -- 4.1. Sulfurated Kleperates -- 4.1.1. Sulfates as stabilizing ligands -- 4.1.2. Acetates as stabilizing ligands -- 5. Functionalization of vacant POMS by [Mo3S4(H2O)9]4- -- 5.1. Saturation of a monovacant Dawson POM -- 5.2. Mo3S4 as supramolecular linker -- Conclusion -- References -- Index. 330 $aThe book highlights recent prominent results in the domain of the synthesis of new polyoxometalates with a specific attention to polyoxothioanions, and provides some novelties and perspectives in selected domains such as magnetism, luminescence and nanochemistry, and macroions self-assembly in solutions. The case of "one-pot" syntheses often used and reported in POMs synthesis is studied in terms of more complex solution speciation processes related to highly dynamical situation connected to factors such as pH, ionic strength, reaction time, temperature, counterion nature, concentration of sta 410 0$aWorld Scientific Series In Nanoscience And Nanotechnology 606 $aPolyoxometalates 606 $aCoordination compounds 615 0$aPolyoxometalates. 615 0$aCoordination compounds. 676 $a546/.3 701 $aSecheresse$b Francis$01803928 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910993973703321 996 $aPolyoxometalate chemistry$94351740 997 $aUNINA