LEADER 02075nam 2200361 n 450 001 996384198203316 005 20200824121219.0 035 $a(CKB)1000000000582871 035 $a(EEBO)2240883984 035 $a(UnM)99859312e 035 $a(UnM)99859312 035 $a(EXLCZ)991000000000582871 100 $a19850613d1643 uy | 101 0 $aeng 135 $aurbn||||a|bb| 200 12$aA second letter from the right honourable the Lord Fairfax, of his late prosperous proceedings against the Earle of New-castle, and his popish army in Yorke-shire$b[electronic resource] $ePresented to the Parliament, and read in both houses, on Wensday the 4. of January. 1642. With an order of the Lords and Commons, that if any of the trained-bands within the city of London, Westminster, or the county of Middlesex; shall neglect to repaire to their colours as often as they shall be required, they shall suffer two days impisonment [sic] or else pay five shillings for the offence. Die Mercurii 4. Ian. 1642. Ordered by the Lords and Commons assembled in Parliament, that this letter and order shall be forthwith printed and published. J. Brown Cler. Parliamentorum 210 $aLondon $cPrinted for Iohn Wright in the Old-baily$dJenuary 5, 1642 [1643] 215 $a8 p 300 $aReproduction of the original in the British Library. 330 $aeebo-0018 607 $aGreat Britain$xHistory$yCivil War, 1642-1649$xCampaigns$vEarly works to 1800 607 $aYorkshire (England)$xHistory$vSources$vEarly works to 1800 607 $aYorkshire (England)$xHistory, Military$vEarly works to 1800 700 $aFairfax$b Thomas Fairfax$cBaron,$f1612-1671.$0804819 712 02$aEngland and Wales.$bParliament.$4aut 801 0$bCu-RivES 801 1$bCu-RivES 801 2$bCStRLIN 801 2$bWaOLN 906 $aBOOK 912 $a996384198203316 996 $aA second letter from the right honourable the Lord Fairfax, of his late prosperous proceedings against the Earle of New-castle, and his popish army in Yorke-shire$92334142 997 $aUNISA LEADER 10800nam 22005413 450 001 9910993878103321 005 20250405060240.0 010 $a9781394361885 010 $a1394361882 010 $a9781394361892 010 $a1394361890 010 $a9781394361878 010 $a1394361874 035 $a(MiAaPQ)EBC31983282 035 $a(Au-PeEL)EBL31983282 035 $a(CKB)38218049500041 035 $a(OCoLC)1513328612 035 $a(EXLCZ)9938218049500041 100 $a20250405d2025 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aEmerging Materials for Photodegradation and Environmental Remediation of Micro- and Nano-Plastics $eRecent Developments and Future Prospects 205 $a1st ed. 210 1$aNewark :$cJohn Wiley & Sons, Incorporated,$d2025. 210 4$dİ2025. 215 $a1 online resource (0 pages) 225 1 $aISTE Invoiced Series 311 08$a9781836690092 311 08$a1836690096 327 $aCover -- Title Page -- Copyright Page -- Contents -- Foreword -- Preface -- Acknowledgments -- Chapter 1. Micro- and Nano-Plastic Pollution: Present Status on Environmental Issues and Photocatalytic Degradation -- 1.1. Introduction -- 1.2. MPs and NPs: Sources, impact and health hazards -- 1.2.1. Micro-plastics -- 1.3. Nano-plastics -- 1.3.1. Sources and environmental risks -- 1.4. Impact of Covid-19 on plastic pollution -- 1.5. Methods for plastic degradation -- 1.5.1. Current methods for plastic degradation -- 1.5.2. Emerging solutions for plastic degradation -- 1.6. Conclusion -- 1.7. Future directions for plastic pollution control -- 1.8. References -- Chapter 2. Metal Oxide-based Smart Materials for Photocatalytic Degradation of Micro- and Nano-Plastics -- 2.1. Introduction -- 2.2. Metal oxide photocatalysts and their characteristics -- 2.2.1. TiO2 -- 2.2.2. ZnO -- 2.2.3. CuO -- 2.2.4. NiO -- 2.3. Conclusion and future prospectives -- 2.4. Acknowledgments -- 2.5. References -- Chapter 3. WO3-based Smart Material for Photocatalytic Degradation of Micro- and Nano-Plastic -- 3.1. Overview of micro- and nano-plastics -- 3.2. Photocatalytic degradation mechanism -- 3.3. Tungsten trioxide (WO3) -- 3.3.1. (WO3)-based smart materials -- 3.3.2. Synthesis of WO3-based smart material -- 3.3.3. A few WO3-based smart materials -- 3.4. Applications and future scope -- 3.5. References -- Chapter 4. The Chemistry of Carbon Nanotubes in Photocatalytic Degradation of Micro- and Nano-Plastic -- 4.1. Introduction -- 4.2. Micro- and nano-plastic -- 4.3. Carbon nanotube materials -- 4.4. Coating of carbon nanotube as photocatalytic degradation materials -- 4.4.1. TiO2 coating -- 4.4.2. ZnO coating -- 4.5. Functionalized carbon nanotube as photocatalytic degradation materials -- 4.5.1. Single wall carbon nanotube -- 4.5.2. Multiwall carbon nanotube. 327 $a4.5.3. Noncovalent endohedral and exohedral functionalization with surfactants -- 4.5.4. Graphene-functionalized carbon nanotube -- 4.6. Hetero atom doping of carbon nanotube as photocatalytic degradation material -- 4.7. Conclusion -- 4.8. References -- Chapter 5. Environmental Justifications of MXene towards Photocatalytic Capture and Conversion of Micro- and Nano-Plastic -- 5.1. Introduction -- 5.2. Nanomaterial catalyzed methods for the degradation of micro- and nano-plastics -- 5.3. Photocatalytic degradation of micro- and nano-plastics -- 5.4. MXene: a nanomaterial with diverse applications -- 5.5. Important properties of MXenes -- 5.6. Application of MXene as photocatalyst -- 5.7. Application of MXene-based materials for the degradation of organic pollutants -- 5.8. MXene as photocatalyst for degradation of MPs and NPs -- 5.9. Conclusion -- 5.10. References -- Chapter 6. Metal-Organic Framework based on Functional Materials for Photocatalytic Degradation of Micro- and Nano-Plastic -- 6.1. Introduction -- 6.2. Historical background and discovery of metal-organic frameworks -- 6.3. Bonding in metal-organic frameworks -- 6.4. Dimensionality of metal-organic frameworks -- 6.5. Methods for the synthesis of metal-organic frameworks -- 6.5.1. Ultrasonic synthesis -- 6.5.2. Electrochemical synthesis -- 6.5.3. Mechanochemical synthesis -- 6.5.4. Microwave synthesis -- 6.6. Properties of metal-organic frameworks -- 6.7. Micro- and nano-plastics -- 6.7.1. Photocatalytic degradation of micro- and nano-plastics -- 6.7.2. Mechanism of photocatalytic degradation -- 6.7.3. Changes in micro-/nano-plastics morphology in photocatalytic degradation -- 6.8. Factors influencing photocatalytic degradation efficiency -- 6.9. Role of micromotors in photocatalytic degradation of MPs/NPs. 327 $a6.10. Photocatalytic water purification: removal of micro- and nano-plastics from water -- 6.10.1. Photocatalytic degradation of polyethylene terephthalate nano-plastics -- 6.10.2. Photodisintegration of emerging pollutants -- 6.11. References -- Chapter 7. Carbon-based Materials for Photocatalytic Degradation of Micro- and Nano-plastics -- 7.1. Introduction -- 7.2. Classification of carbon-based nanomaterials -- 7.2.1. Carbon nanotubes -- 7.2.2. Single-walled carbon nanotubes -- 7.2.3. Double-walled carbon nanotubes -- 7.2.4. Multi-walled carbon nanotubes -- 7.2.5. Fullerene -- 7.2.6. Nanodiamonds -- 7.2.7. Carbon dots -- 7.2.8. Graphene -- 7.2.9. Graphene nanoribbons -- 7.2.10. Graphene quantum dots -- 7.3. An overview of photocatalysts' breakdown of MPs and NPs -- 7.4. Carbonaceous nanomaterials -- 7.4.1. Graphene, RGO (reduced graphene oxide) and GO -- 7.4.2. Carbon nanotubes -- 7.4.3. Nano-graphite -- 7.4. Conclusion -- 7.5. References -- Chapter 8. Graphene-based Materials for Photodegradation of Micro- and Nano-Plastics -- 8.1. Introduction -- 8.1.1. Overview of micro-plastics -- 8.1.2. Overview of nano-plastics -- 8.1.3. Environmental impact of micro- and nano-plastics -- 8.1.4. Better alternatives to plastics -- 8.1.5. Status of plastic recycling in India with other countries -- 8.2. Graphene-based materials -- 8.3. Structure and characteristics of graphene-based materials -- 8.4. Photodegradation and graphene-based materials -- 8.5. Application of GMBs in removal/degradation/remediation of different pollutants -- 8.6. Photodegradation of micro- and nano-plastics by graphene-based materials -- 8.7. Challenges and future perspectives -- 8.8. Environmental fate of graphene-based materials -- 8.9. Conclusion -- 8.10. References -- Chapter 9. 2D Nanomaterials for Photocatalytic Degradation of Micro- and Nano-Plastics -- 9.1. Introduction. 327 $a9.2. 2D materials -- 9.2.1. Graphene family -- 9.2.2. Transition metal dichalcogenides and MXenes -- 9.2.3. Phosphorene -- 9.2.4. Oxides and hydroxide materials -- 9.3. Synthesis of 2D materials -- 9.4. Properties and applications of 2D materials -- 9.5. Application of 2D materials in photocatalytic degradation -- 9.6. Micro- and nano-plastics -- 9.7. Micro- and nano-plastics identification -- 9.7.1. Microscopy: stereo microscopy and dissecting microscopy -- 9.7.2. Fluorescence microscopy -- 9.7.3. Transmission electron microscopy -- 9.7.4. Scanning electron microscopy -- 9.7.5. Atomic force microscopy -- 9.7.6. FTIR spectroscopy -- 9.7.7. Raman spectroscopy -- 9.7.8. Thermal analysis -- 9.7.9. New approaches and new identification strategies -- 9.7.10. Impact of micro- and nano-plastics on human health -- 9.8. Photocatalytic degradation of micro- and nano-plastic -- 9.9. Photocatalytic degradation of micro- and nano-plastic through 2D materials -- 9.10. Summary and conclusion -- 9.11. Acknowledgments -- 9.12. References -- Chapter 10. Hybrid 2D-Smart Materials in Photocatalytic Degradation of Micro- and Nano-Plastics -- 10.1. Introduction -- 10.2. 2D materials: properties and functionalities -- 10.2.1. Electronic properties -- 10.2.2. Optical properties -- 10.2.3. Mechanical properties -- 10.2.4. Thermal properties -- 10.2.5. Chemical properties and functionalization -- 10.2.6. Synergistic effects in hybrid 2D materials -- 10.3. Hybrid 2D-smart materials: design and synthesis -- 10.3.1. Synthesis techniques -- 10.3.2. Examples of hybrid 2D-smart materials -- 10.4. Mechanisms of photocatalytic degradation of micro- and nano-plastics -- 10.4.1. Initiation of degradation -- 10.4.2. Role of photocatalyst morphology and composition -- 10.4.3. Pathways of degradation -- 10.4.4. Environmental factors and degradation efficiency. 327 $a10.5. Degradation of micro-plastics in marine environments -- 10.5.1. Photocatalytic degradation of nano-plastics in wastewater treatment -- 10.5.2. Integration of photocatalytic coatings in water purification systems -- 10.5.3. Photocatalytic degradation of micro-plastics in agricultural soils -- 10.6. Challenges, limitations and future scopes -- 10.7. Conclusions -- 10.8. References -- Chapter 11. Design and Structural Modification of Advanced Biomaterials for Photocatalytic Degradation of Micro- and Nano-Plastics -- 11.1. Introduction -- 11.1.1. Plastic pollution: a global challenge -- 11.1.2. Photocatalytic degradation: a green approach -- 11.2. Smart biomaterials: overview and selection criteria -- 11.2.1. Definition and characteristics of smart biomaterials -- 11.2.2. Selection criteria for smart biomaterials -- 11.3. Design principles for enhanced photocatalysis -- 11.3.1. Tailoring optical properties -- 11.3.2. Surface functionalization for targeted activity -- 11.4. Structural modifications for improved efficiency -- 11.4.1. Nanocomposite formation -- 11.4.2. Porosity enhancement -- 11.5. Case studies and applications -- 11.5.1. Titanium dioxide nanomaterials -- 11.5.2. Graphene-based smart biomaterials -- 11.6. Challenges and future perspectives -- 11.6.1. Overcoming biocompatibility concerns -- 11.6.2. Scalability and cost-effectiveness -- 11.6.3. Integration with other remediation techniques -- 11.7. Conclusion -- 11.8. References -- Chapter 12. Nanocomposites: Sustainable Resources for Photodegradation of Micro- and Nano-Plastics -- 12.1. Introduction -- 12.1.1. Addressing environmental challenges with nanocomposites -- 12.2. Photocatalytic degradation of micro- and nano-plastics -- 12.3. Nanocomposites in environmental remediation -- 12.3.1. Understanding nanocomposites. 327 $a12.3.2. Enhanced mechanical, thermal, electrical and optical properties. 410 0$aISTE Invoiced Series 700 $aSingh$b Laxman$01812169 701 $aKumar$b Sunil$0868762 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910993878103321 996 $aEmerging Materials for Photodegradation and Environmental Remediation of Micro- and Nano-Plastics$94364459 997 $aUNINA