LEADER 00938nam0-22003491--450- 001 990008358500403321 005 20120517151251.0 035 $a000835850 035 $aFED01000835850 035 $a(Aleph)000835850FED01 035 $a000835850 100 $a20060705d1949----km-y0itay50------ba 101 0 $aita 102 $aIT 105 $ay-------001yy 200 1 $aU.R.S.S.$fa cura di Tomaso Napolitano 210 $aTorino$cG. B. Paravia e C.$d1949 215 $a98 p.$d21 cm 225 1 $a<>scuola nel mondo$v3 610 0 $aUnione Sovietica$aIstruzione 676 $a371.1$v12 rid. 700 1$aNapolitano,$bTomaso$032476 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990008358500403321 952 $aXVII 208 (3)$b30783$fFGBC 952 $aU-03b-005$bIst. s.i.$fILFGE 952 $aXVII 26$b30784$fFGBC 959 $aFGBC 959 $aILFGE 996 $aU.R.S.S$9722869 997 $aUNINA LEADER 01061nam--2200349---450- 001 990002050920203316 005 20090219133309.0 035 $a000205092 035 $aUSA01000205092 035 $a(ALEPH)000205092USA01 035 $a000205092 100 $a20041005d1967----km-y0itay0103----ba 101 0 $aeng 102 $aNL 105 $a||||||||001yy 200 1 $a<> demand for natural gas in the United States$ea dinamic approach for the residential and commercial market$fPietro Balestra 210 $aAmsterdam$cNorth-Holland$d1967 215 $a154 p.$d23 cm 410 0$12001 454 1$12001 461 1$1001-------$12001 676 $a658.1 700 1$aBALESTRA,$bPietro$0104581 801 0$aIT$bsalbc$gISBD 912 $a990002050920203316 951 $a658.1 BAL 1 (iep IV 11)$b27892 E.C.$ciep IV$d00198334 959 $aBK 969 $aECO 979 $aSIAVPROV$b10$c20041005$lUSA01$h1004 979 $aRSIAV2$b90$c20090219$lUSA01$h1333 996 $aDemand for natural gas in the United States$91040406 997 $aUNISA LEADER 03905nam 22007575 450 001 9910992790903321 005 20250330141137.0 010 $a9783031571008 010 $a3031571002 024 7 $a10.1007/978-3-031-57100-8 035 $a(CKB)38166501800041 035 $a(DE-He213)978-3-031-57100-8 035 $a(MiAaPQ)EBC31981109 035 $a(Au-PeEL)EBL31981109 035 $a(EXLCZ)9938166501800041 100 $a20250330d2025 u| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aTwo-dimensional Crossing and Product Cubic Systems, Vol. II $eCrossing-linear and Self-quadratic Product Vector Field /$fby Albert C. J. Luo 205 $a1st ed. 2025. 210 1$aCham :$cSpringer Nature Switzerland :$cImprint: Springer,$d2025. 215 $a1 online resource (X, 259 p. 83 illus., 82 illus. in color.) 311 08$a9783031570995 311 08$a3031570995 327 $aQuadratic and Cubic Product Systems -- Inflection Singularity and Bifurcation Dynamics -- Saddle-node and hyperbolic-flow singular dynamics. 330 $aThis book, the 15th of 15 related monographs on Cubic Dynamic Systems, discusses crossing and product cubic systems with a crossing-linear and self-quadratic product vector field. The author discusses series of singular equilibriums and hyperbolic-to-hyperbolic-scant flows that are switched through the hyperbolic upper-to-lower saddles and parabola-saddles and circular and hyperbolic upper-to-lower saddles infinite-equilibriums. Series of simple equilibrium and paralleled hyperbolic flows are also discussed, which are switched through inflection-source (sink) and parabola-saddle infinite-equilibriums. Nonlinear dynamics and singularity for such crossing and product cubic systems are presented. In such cubic systems, the appearing bifurcations are: parabola-saddles, hyperbolic-to-hyperbolic-secant flows, third-order saddles (centers) and parabola-saddles (saddle-center). Develops a theory of crossing and product cubic systems with a crossing-linear and self-quadratic product vector field; Presents equilibrium series with hyperbolic-to-hyperbolic-scant flows and with paralleled hyperbolic flows; Shows equilibrium series switching bifurcations by up-down hyperbolic upper-to-lower saddles, parabola-saddles, et al. 606 $aDynamics 606 $aNonlinear theories 606 $aEngineering mathematics 606 $aEngineering$xData processing 606 $aMultibody systems 606 $aVibration 606 $aMechanics, Applied 606 $aPlasma waves 606 $aAlgebra, Universal 606 $aApplied Dynamical Systems 606 $aMathematical and Computational Engineering Applications 606 $aMultibody Systems and Mechanical Vibrations 606 $aWaves, instabilities and nonlinear plasma dynamics 606 $aGeneral Algebraic Systems 615 0$aDynamics. 615 0$aNonlinear theories. 615 0$aEngineering mathematics. 615 0$aEngineering$xData processing. 615 0$aMultibody systems. 615 0$aVibration. 615 0$aMechanics, Applied. 615 0$aPlasma waves. 615 0$aAlgebra, Universal. 615 14$aApplied Dynamical Systems. 615 24$aMathematical and Computational Engineering Applications. 615 24$aMultibody Systems and Mechanical Vibrations. 615 24$aWaves, instabilities and nonlinear plasma dynamics. 615 24$aGeneral Algebraic Systems. 676 $a515.39 700 $aLuo$b Albert C. J$4aut$4http://id.loc.gov/vocabulary/relators/aut$0720985 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910992790903321 996 $aTwo-dimensional Crossing and Product Cubic Systems, Vol. II$94349102 997 $aUNINA