LEADER 00914nam--2200301---450 001 990003457670203316 005 20220601120952.0 035 $a000345767 035 $aUSA01000345767 035 $a(ALEPH)000345767USA01 035 $a000345767 100 $a20101020d1953----km-y0itay50------ba 101 $afre 102 $aBE 105 $a||||||||001yy 200 1 $aEloge des eaux et des fontaines de Rome$fRichard Dupierreux$gillustré de six dessins de Marie Howet 210 $aBruxelles ; Paris$cLa Maison du Poète$d1953 215 $a60 p.$d22 cm 700 1$aDUPIERREUX,$bRichard$0608836 702 1$aHOWET,$bMarie 801 0$aIT$bsalbc$gISBD 912 $a990003457670203316 951 $aXV.4.A. 1672$b227776 L.M.$cXV.4.A.$d00185892 959 $aBK 969 $aFF 979 $aMARIAS$b90$c20101020$lUSA01$h1508 996 $aEloge des eaux et des fontaines de Rome$91109259 997 $aUNISA LEADER 03184nam 22006495 450 001 9910992788803321 005 20251106143814.0 010 $a9783031825095 010 $a3031825098 024 7 $a10.1007/978-3-031-82509-5 035 $a(MiAaPQ)EBC31980098 035 $a(Au-PeEL)EBL31980098 035 $a(CKB)38134260600041 035 $a(DE-He213)978-3-031-82509-5 035 $a(EXLCZ)9938134260600041 100 $a20250330d2025 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aIntroduction to Ring and Module Theory /$fby Alberto Facchini 205 $a1st ed. 2025. 210 1$aCham :$cSpringer Nature Switzerland :$cImprint: Birkhäuser,$d2025. 215 $a1 online resource (440 pages) 225 1 $aCompact Textbooks in Mathematics,$x2296-455X 311 08$a9783031825088 311 08$a303182508X 327 $a- 1. Basic Notions -- 2. Some Classes of Modules -- 3. Right Artinian Rings -- 4. Local Rings, Injective Modules, Flat Modules -- 5. Additive Categories, Abelian Categories -- 6. Appendices. 330 $aThis textbook is designed for a first course in ring theory, module theory and category theory. Written following several decades of teaching experience, it stands out with its clear and engaging style, featuring thorough explanations and attention to detail. Carefully selected exercises encourage active learning and problem-solving. The textbook integrates elementary category theory with basic concepts and examples developed throughout the course. Although the primary focus is on rings and modules, relevant notions for other algebraic structures, such as groups and semigroups, are also discussed. Thus, this book aims at introducing students to noncommutative rings and modules within a broader algebraic context. Aimed at advanced undergraduates or master students in mathematics, this textbook is suitable both for use in the classroom and self-study. Whereas the first part of the book covers a basic course in ring and module theory, the latter part includes optional deepening topics. 410 0$aCompact Textbooks in Mathematics,$x2296-455X 606 $aAssociative rings 606 $aAssociative algebras 606 $aAlgebra, Homological 606 $aAssociative Rings and Algebras 606 $aCategory Theory, Homological Algebra 606 $aAnells associatius$2thub 606 $aÀlgebres associatives$2thub 606 $aÀlgebra homològica$2thub 608 $aLlibres electrònics$2thub 615 0$aAssociative rings. 615 0$aAssociative algebras. 615 0$aAlgebra, Homological. 615 14$aAssociative Rings and Algebras. 615 24$aCategory Theory, Homological Algebra. 615 7$aAnells associatius. 615 7$aÀlgebres associatives 615 7$aÀlgebra homològica 676 $a512.46 700 $aFacchini$b Alberto$042549 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910992788803321 996 $aIntroduction to Ring and Module Theory$94349083 997 $aUNINA