LEADER 03838nam 22005535 450 001 9910992771403321 005 20250328115303.0 010 $a3-031-84651-6 024 7 $a10.1007/978-3-031-84651-9 035 $a(CKB)38124958000041 035 $a(DE-He213)978-3-031-84651-9 035 $a(MiAaPQ)EBC31979205 035 $a(Au-PeEL)EBL31979205 035 $a(EXLCZ)9938124958000041 100 $a20250328d2025 u| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aEnhancing Video Streaming with AI, Cloud, and Edge Technologies $eOptimization Techniques and Frameworks /$fby Mahmoud Darwich, Magdy Bayoumi 205 $a1st ed. 2025. 210 1$aCham :$cSpringer Nature Switzerland :$cImprint: Springer,$d2025. 215 $a1 online resource (XXIII, 338 p. 107 illus., 106 illus. in color.) 311 08$a3-031-84650-8 327 $aPart I Foundations and Challenges in Video Streaming -- Chapter 1 Introduction to Video Streaming Systems and Challenges -- Part II AI-Driven Approaches for Video Streaming -- Chapter 2 AI-Driven Video Quality Assessment and Enhancement Techniques -- Chapter 3 Federated Learning for Scalable Video Streaming -- Chapter 4 Deep Learning for Adaptive Video Quality -- Part III Cloud and Edge Computing in Video Streaming -- Chapter 5 Cloud-Enhanced Video Streaming: Storage and Resource Management -- Chapter 6 Edge Computing for Low-Latency Video Streaming -- Chapter 7 Swarm Intelligence for Efficient Video Data Distribution in Edge Networks -- Part IV Emerging Technologies in Video Streaming -- Chapter 8 Blockchain-Enhanced Distributed Storage for Cloud-Based Video Streaming -- Chapter 9 AI-Driven Resource Allocation and Optimization in Video Streaming -- Part V Practical Implementations and Future Trends -- Chapter 10 Case Studies and Real-World Implementations of AI, Cloud, and Edge in Video Streaming -- Chapter 11 Conclusion and Future Directions for Video Streaming Enhancements. 330 $aThis book explores how artificial intelligence, cloud computing, and edge technologies are transforming video streaming systems. It delves into AI-driven adaptive bitrate streaming, predictive resource allocation, and federated learning for personalized recommendations. The integration of cloud and edge computing is highlighted as a solution for scalability and low-latency streaming, addressing challenges like bandwidth optimization, cost-efficiency, and Quality of Experience (QoE). The book offers actionable insights into emerging technologies like 5G, quantum computing, and blockchain. It features case studies and real-world implementations, making it an essential resource for researchers, industry professionals, and students. Bridging theory and practice, the book provides a comprehensive guide to building the next generation of efficient and scalable video streaming infrastructures. 606 $aMultimedia systems 606 $aCloud computing 606 $aArtificial intelligence 606 $aMultimedia Information Systems 606 $aCloud Computing 606 $aArtificial Intelligence 615 0$aMultimedia systems. 615 0$aCloud computing. 615 0$aArtificial intelligence. 615 14$aMultimedia Information Systems. 615 24$aCloud Computing. 615 24$aArtificial Intelligence. 676 $a006.7 700 $aDarwi?sh$b Mah?mu?d$4aut$4http://id.loc.gov/vocabulary/relators/aut$01684239 702 $aBayoumi$b Magdy$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910992771403321 996 $aEnhancing Video Streaming with AI, Cloud, and Edge Technologies$94526746 997 $aUNINA