LEADER 03712nam 22007215 450 001 9910986146103321 005 20251103085925.0 010 $a9783031688546 024 7 $a10.1007/978-3-031-68854-6 035 $a(CKB)37783826300041 035 $a(MiAaPQ)EBC31952888 035 $a(Au-PeEL)EBL31952888 035 $a(DE-He213)978-3-031-68854-6 035 $a(EXLCZ)9937783826300041 100 $a20250306d2025 u| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aInstitution-independent Model Theory /$fby R?zvan Diaconescu 205 $a2nd ed. 2025. 210 1$aCham :$cSpringer Nature Switzerland :$cImprint: Birkhäuser,$d2025. 215 $a1 online resource (568 pages) 225 1 $aStudies in Universal Logic,$x2297-0290 311 08$a9783031688539 327 $a- Introduction -- Part I Basics -- Categories -- Institutions -- Theories and Models -- Internal Logic -- Part II Advanced Topics -- Model Ultraproducts -- Saturated Models -- Preservation and Axiomatizability -- Interpolation -- Definability -- Part III Extensions -- Institutions with Proofs -- Models with States -- Many-valued Truth Institutions -- Part IV Applications to Computing -- Grothendieck Institutions -- Specification -- Logic Programming. 330 $aA model theory that is independent of any concrete logical system allows a general handling of a large variety of logics. This generality can be achieved by applying the theory of institutions that provides a precise general mathematical formulation for the intuitive concept of a logical system. Especially in computer science, where the development of a huge number of specification logics is observable, institution-independent model theory simplifies and sometimes even enables a concise model-theoretic analysis of the system. Besides incorporating important methods and concepts from conventional model theory, the proposed axiomatic top-down methodology allows for a structurally clean understanding of model-theoretic phenomena. Consequently, results from conventional concrete model theory can be understood more easily, and sometimes even new results are obtained. Moreover, all this is also applied to non-classical model theories. This second edition introduces some novelties in the presentation style which aim to enhance the readability of the material and the proofs. Additional chapters have also been added. 410 0$aStudies in Universal Logic,$x2297-0290 606 $aLogic, Symbolic and mathematical 606 $aMachine theory 606 $aLogic 606 $aModel theory 606 $aMathematical Logic and Foundations 606 $aFormal Languages and Automata Theory 606 $aLogic 606 $aModel Theory 606 $aLògica$2thub 606 $aTeoria de màquines$2thub 606 $aTeoria de models$2thub 606 $aLlenguatges formals$2thub 608 $aLlibres electrònics.$2thub 615 0$aLogic, Symbolic and mathematical. 615 0$aMachine theory. 615 0$aLogic. 615 0$aModel theory. 615 14$aMathematical Logic and Foundations. 615 24$aFormal Languages and Automata Theory. 615 24$aLogic. 615 24$aModel Theory. 615 7$aLògica 615 7$aTeoria de màquines 615 7$aTeoria de models 615 7$aLlenguatges formals 676 $a511.3 700 $aDiaconescu$b Ra?zvan$01791069 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910986146103321 996 $aInstitution-Independent Model Theory$94327917 997 $aUNINA