LEADER 03846nam 22006495 450 001 9910984591303321 005 20251030145240.0 010 $a9783031725852$b(electronic bk.) 010 $z9783031725845 024 7 $a10.1007/978-3-031-72585-2 035 $a(MiAaPQ)EBC31942157 035 $a(Au-PeEL)EBL31942157 035 $a(CKB)37772226000041 035 $a(DE-He213)978-3-031-72585-2 035 $a(OCoLC)1507695478 035 $a(EXLCZ)9937772226000041 100 $a20250304d2025 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aFrom Here to Infinity $eTracing the Origin and Development of Projective Geometry /$fby Andrea Del Centina, Alessandro Gimigliano 205 $a1st ed. 2025. 210 1$aCham :$cSpringer Nature Switzerland :$cImprint: Springer,$d2025. 215 $a1 online resource (969 pages) 225 1 $aSources and Studies in the History of Mathematics and Physical Sciences,$x2196-8829 311 08$aPrint version: Del Centina, Andrea From Here to Infinity Cham : Springer,c2025 9783031725845 327 $a- 1. The Greek Legacy -- 2. Perspective in the Renaissance -- 3. New ways of looking at conics -- 4. Desargues, the dawn of projective geometry -- 5. Pascal?s geometrical achievements -- 6. An interlude a century and a half long -- 7. Towards a new geometry -- 8. Poncelet, the projective properties of figures -- 9. The algebraic way to projective geometry -- 10. The synthetic route: the contributions of Steiner and Chasles -- 11. Von Staudt?s pure synthetism -- 12. Projective geometry 1870-1930 and beyond. 330 $aThis monograph traces the development of projective geometry from its Greek origins to the early 20th century. It covers Renaissance perspective studies and insights from the late sixteenth to seventeenth centuries, examining the contributions of Desargues and Pascal. Most of the book is devoted to the evolution of the subject in the 19th century, from Carnot to von Staudt. In particular, the book offers an unusually thorough appreciation of Brianchon's work, a detailed study of Poncelet's innovations, and a remarkable account of the contributions of Möbius and Plücker. It also addresses the difficult question of the historical relationship between synthetic and analytic points of view in geometry, analyzing the work of prominent synthetic geometers Steiner, Chasles, and von Staudt in detail. The book concludes around 1930, after the synthetic point of view was axiomatized and the analytic point of view became intertwined with algebraic geometry. Balancing historical analysis with technical precision and providing deep insights into the evolution of the mathematics, this richly illustrated book serves as a central reference on the history of projective geometry. 410 0$aSources and Studies in the History of Mathematics and Physical Sciences,$x2196-8829 606 $aMathematics 606 $aHistory 606 $aGeometry, Projective 606 $aHistory of Mathematical Sciences 606 $aProjective Geometry 606 $aMatemàtica$2thub 606 $aHistòria$2thub 606 $aGeometria projectiva$2thub 608 $aLlibres electrònics$2thub 615 0$aMathematics. 615 0$aHistory. 615 0$aGeometry, Projective. 615 14$aHistory of Mathematical Sciences. 615 24$aProjective Geometry. 615 7$aMatemàtica 615 7$aHistòria 615 7$aGeometria projectiva 676 $a510.9 700 $aDel Centina$b Andrea$0460659 701 $aGimigliano$b Alessandro$0721194 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 912 $a9910984591303321 996 $aFrom Here to Infinity$94326278 997 $aUNINA