LEADER 04127nam 22006735 450 001 9910983305703321 005 20251028155358.0 010 $a9789819792023 010 $a9819792029 024 7 $a10.1007/978-981-97-9202-3 035 $a(MiAaPQ)EBC31897886 035 $a(Au-PeEL)EBL31897886 035 $a(CKB)37465302600041 035 $a(DE-He213)978-981-97-9202-3 035 $a(OCoLC)1500772446 035 $a(EXLCZ)9937465302600041 100 $a20250206d2025 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aDifferential Geometry $eManifolds, Bundles and Characteristic Classes (Book I-A) /$fby Elisabetta Barletta, Sorin Dragomir, Mohammad Hasan Shahid, Falleh R. Al-Solamy 205 $a1st ed. 2025. 210 1$aSingapore :$cSpringer Nature Singapore :$cImprint: Springer,$d2025. 215 $a1 online resource (1005 pages) 225 1 $aInfosys Science Foundation Series in Mathematical Sciences,$x2364-4044 311 08$a9789819792016 311 08$a9819792010 327 $aChapter 1 Manifolds and Tensor Calculus -- Chapter 2 Differentiable Actions and Principal Bundles -- Chapter 3 Infinite dimensional Differential Geometry. 330 $aThis book, Di?erential Geometry: Manifolds, Bundles and Characteristic Classes (Book I-A), is the ?rst in a captivating series of four books presenting a choice of topics, among fundamental and more advanced, in di?erential geometry (DG), such as manifolds and tensor calculus, di?erentiable actions and principal bundles, parallel displacement and exponential mappings, holonomy, complex line bundles and characteristic classes. The inclusion of an appendix on a few elements of algebraic topology provides a didactical guide towards the more advanced Algebraic Topology literature. The subsequent three books of the series are: Di?erential Geometry: Riemannian Geometry and Isometric Immersions (Book I-B) Di?erential Geometry: Foundations of Cauchy-Riemann and Pseudohermitian Geometry (Book I-C) Di?erential Geometry: Advanced Topics in Cauchy?Riemann and Pseudohermitian Geometry (Book I-D) The four books belong to an ampler book project (Di?erential Geometry, Partial Di?erential Equations, and Mathematical Physics, by the same authors) and aim to demonstrate how certain portions of DG and the theory of partial di?erential equations apply to general relativity and (quantum) gravity theory. These books supply some of the ad hoc DG machinery yet do not constitute a comprehensive treatise on DG, but rather Authors? choice based on their scienti?c (mathematical and physical) interests. These are centered around the theory of immersions - isometric, holomorphic, and Cauchy-Riemann (CR) -and pseudohermitian geometry, as devised by Sidney Martin Webster for the study of nondegenerate CR structures, themselves a DG manifestation of the tangential CR equations. 410 0$aInfosys Science Foundation Series in Mathematical Sciences,$x2364-4044 606 $aGeometry, Differential 606 $aGlobal analysis (Mathematics) 606 $aManifolds (Mathematics) 606 $aDifferential Geometry 606 $aGlobal Analysis and Analysis on Manifolds 606 $aGeometria diferencial$2thub 606 $aAnàlisi global (Matemàtica)$2thub 608 $aLlibres electrònics$2thub 615 0$aGeometry, Differential. 615 0$aGlobal analysis (Mathematics) 615 0$aManifolds (Mathematics) 615 14$aDifferential Geometry. 615 24$aGlobal Analysis and Analysis on Manifolds. 615 7$aGeometria diferencial 615 7$aAnàlisi global (Matemàtica) 676 $a516.36 700 $aBarletta$b Elisabetta$0307923 701 $aDragomir$b Sorin$0439634 701 $aShahid$b Mohammad Hasan$01786037 701 $aAl-Solamy$b Falleh R$01786038 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910983305703321 996 $aDifferential Geometry$94317452 997 $aUNINA