LEADER 00897nam0 2200253 450 001 000020819 005 20190311102537.0 100 $a20081222d1922----km-y0itay50------ba 105 $ay-------001yy 200 1 $aIl potere marittimo nel Pacifico$estudio del problema marittimo americano-giapponese$fHector C. Bywater$gtraduzione dall'Inglese dei ten. di vascello U. Rossini e L. Biancheri 210 $aFirenze$cEditori Carpignani & Zipoli$d1922 215 $aVII, 254 p.$cc. piegata$d26 cm 410 0$12001 500 10$aIl potere marittimo nel Pacifico$947735 610 1 $aMarina militare 610 1 $aStati Uniti 610 1 $aGiappone 676 $a900$v20 700 1$aBywater,$bHector C.$0130989 801 0$aIT$bUNIPARTHENOPE$gRICA$2UNIMARC 912 $a000020819 951 $aDEP III-0069$bs.i.$cNAVA4$d2008 996 $aIl potere marittimo nel Pacifico$947735 997 $aUNIPARTHENOPE LEADER 03505nam 22006735 450 001 9910977979403321 005 20250201115242.0 010 $a9783031741791 010 $a303174179X 024 7 $a10.1007/978-3-031-74179-1 035 $a(CKB)37447379700041 035 $a(MiAaPQ)EBC31897173 035 $a(Au-PeEL)EBL31897173 035 $a(OCoLC)1496393810 035 $a(DE-He213)978-3-031-74179-1 035 $a(EXLCZ)9937447379700041 100 $a20250201d2024 u| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aQuantum Speed Limits to Operator Growth /$fby Nicoletta Carabba 205 $a1st ed. 2024. 210 1$aCham :$cSpringer Nature Switzerland :$cImprint: Springer,$d2024. 215 $a1 online resource (222 pages) 225 1 $aSpringer Theses, Recognizing Outstanding Ph.D. Research,$x2190-5061 311 08$a9783031741784 311 08$a3031741781 327 $aChapter 1.Introduction -- Chapter 2.Operator growth in Krylov space -- Chapter 3.Dispersion bound on Krylov complexity -- Chapter 4.A brief history of quantum speed limits in isolated systems -- Chapter 5.QSLs on operator flows -- Chapter 6. QSLs on correlation functions -- Chapter 7.A geometric operator quantum speed limit -- Chapter 8.Conclusions. 330 $aThis book introduces universal bounds to quantum unitary dynamics, with applications ranging from condensed matter models to quantum metrology and computation. Motivated by the observation that the dynamics of many-body systems can be better unraveled in the Heisenberg picture, we focus on the unitary evolution of quantum observables, a process known as operator growth and quantified by the Krylov complexity. By means of a generalized uncertainty relation, we constrain the complexity growth through a universal speed limit named the dispersion bound, investigating also its relation with quantum chaos. Furthermore, the book extends the framework of quantum speed limits (QSLs) to operator flows, identifying new fundamental timescales of physical processes. Crucially, the dynamics of operator complexity attains the QSL whenever the dispersion bound is saturated. Our results provide computable constraints on the linear response of many-body systems out of equilibrium and the quantum Fisher information governing the precision of quantum measurements. 410 0$aSpringer Theses, Recognizing Outstanding Ph.D. Research,$x2190-5061 606 $aQuantum theory 606 $aSystem theory 606 $aDynamics 606 $aQuantum electrodynamics 606 $aQuantum Physics 606 $aQuantum Measurement and Metrology 606 $aComplex Systems 606 $aDynamical Systems 606 $aQuantum Electrodynamics, Relativistic and Many-body Calculations 615 0$aQuantum theory. 615 0$aSystem theory. 615 0$aDynamics. 615 0$aQuantum electrodynamics. 615 14$aQuantum Physics. 615 24$aQuantum Measurement and Metrology. 615 24$aComplex Systems. 615 24$aDynamical Systems. 615 24$aQuantum Electrodynamics, Relativistic and Many-body Calculations. 676 $a530.12 700 $aCarabba$b Nicoletta$01788708 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910977979403321 996 $aQuantum Speed Limits to Operator Growth$94323872 997 $aUNINA