LEADER 11848nam 2200613 a 450 001 9910974499703321 005 20251117005937.0 010 $a1-61728-402-5 035 $a(CKB)2670000000041865 035 $a(EBL)3020749 035 $a(SSID)ssj0000416867 035 $a(PQKBManifestationID)12110244 035 $a(PQKBTitleCode)TC0000416867 035 $a(PQKBWorkID)10422999 035 $a(PQKB)11206627 035 $a(MiAaPQ)EBC3020749 035 $a(Au-PeEL)EBL3020749 035 $a(CaPaEBR)ebr10680887 035 $a(OCoLC)662457849 035 $a(BIP)33698020 035 $a(BIP)27081220 035 $a(EXLCZ)992670000000041865 100 $a20090622d2009 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aEnergy recovery /$fEdgard DuBois and Arthur Mercier, editors 205 $a1st ed. 210 $aHauppauge N.Y. $cNova Science Publishers$dc2009 215 $a1 online resource (343 p.) 300 $aDescription based upon print version of record. 311 08$a1-60741-065-6 320 $aIncludes bibliographical references and index. 327 $aIntro -- ENERGY RECOVERY -- CONTENTS -- PREFACE -- BIOGAS RECOVERY FROM LANDFILLS -- ABSTRACT -- I. INTRODUCTION -- II. REGULATORY CONSIDERATIONS -- A. U Landfill Directive 1999/31/EC -- B. RCRA Regulations -- C. CAA Regulations -- D. CWA Regulations -- III. SANITARY AND BIOREACTOR LANDFILLS -- A. Development of Sanitary Landfills -- B. Bioreactor Landfills -- 1. Anaerobic bioreactor landfills -- 2. Aerobic bioreactor landfills -- 3. Aerobic-anaerobic bioreactor landfills -- C. Features Unique to Bioreactor Landfills -- D. Potential Advantages of Bioreactor Landfills -- IV. LANDFILL GAS (LFG) -- A. Landfill Gas Characteristics -- 1. Density and viscosity -- 2. Heat value content -- 3. Non-methane organic compounds -- 4. Water vapor -- 5. Others -- B. Landfill Gas Composition -- C. Landfill Gas Yield -- D. LFG Emission -- 1. LFG Generation -- 1.1. LFG generation mechanisms -- Volatilization -- Biological decomposition -- Stage I. Hydrolysis/aerobic degradation -- Stage II. Hydrolysis and fermentation -- Stage III. Acetogenesis -- Stage IV. Methanogenesis -- Stage V. Oxidation -- 1.2. Factors affecting LFG generation -- 1. Site characteristics -- 2. Waste characteristics -- 3. Age of the waste -- 4. Temperature -- 5. Pressure -- 6. Moisture content and movement -- 7. Atmospheric conditions -- 8. Oxygen concentration -- 9. Hydrogen concentration -- 10. Precipitation -- 11. Density of the waste -- 12. Nutrients and trace metals -- 13. Acidity -- 14. Inhibitors -- 2. LFG Transport -- 2.1. LFG transport mechanisms -- 2.2. Factors affecting LFG transport mechanisms -- E. LFG Production Enhancement Methods -- 1. Leachate recirculation -- 2. pH buffering -- 3. Sludge addition -- 4. Temperature control -- 5. Reduced waste particle size -- 6. Cell design, daily cover and compaction of waste -- 7. Pre-treatment -- V. LANDFILL GAS BEHAVIOUR. 327 $aA. LFG Movement and Migration -- B. Monitoring of LFG -- C. LFG Hazards -- 1. LFG explosion hazard -- 2. LFG asphyxiation hazard -- 3. Landfill odors -- VI. MODELING OF METHANE GAS GENERATIONAND EMISSION FROM LANDFILLS -- A. General -- B. U.S.E.P.A. Model - Landgem -- 1. Model description -- 1.1. Input Parameters -- Methane generation potential (L0) -- Methane generation rate (k) -- C. IPCC-First Order Decay (FOD) Model -- 1. Model description -- 1.1. Input Parameters -- Degradable Organic Carbon ( j DOC ) -- Decay rate/methane generation rate ( j k ) -- D. Regression Models -- F. Other Models -- VII. LANDFILL GAS ENERGY SYSTEMS -- A. LFG Collection System -- Passive venting -- Physical barriers -- Pumping extraction systems -- B. LFG Pretreatment System -- C. LFG Utilization System -- 1. Combustion technologies (Flaring Practices) LFG flaring -- 1.1. Open flame flares -- 1.2. Enclosed flame flares -- 1.3. Other enclosed combustion technologies -- 2. Non-combustion technologies -- 2.1. Energy recovery technologies -- 2.2. Gas to product conversion technologies -- VIII. CASE STUDY: CALGARY BIOCELL PROJECT -- A. Introduction -- B. The Calgary Biocell: Background and Construction Phase -- C. Operation of the Calgary Biocell -- 1. Biocell stage 1: Anaerobic decomposition with gas extraction -- 2. Biocell stage 2: Aerobic decomposition -- 3. Biocell stage 3: Mining for recovery of useful/recyclable products -- D. Summary and Conclusions -- REFERENCES -- NOTATIONS -- LANDFILL GAS: GENERATION. MODELS AND ENERGY RECOVERY -- ABSTRACT -- 1. INTRODUCTION -- 2. LANDFILL GAS CHARACTERISTICSAND GENERATION MECHANISMS -- 3. MATHEMATICAL MODELS FOR LANDFILL GASPRODUCTION PREDICTION -- The Triangular Model -- First Order Decay Model: The Scholl Canyon Equation -- Software Application of First Order Decay Model: Landgem -- Modified First Order Model. 327 $a4. THE ESTIMATION OF K AND L0 IN THE MODELS -- 5. APPLICATION OF THE MODELS TO A STUDY CASE -- 6. ENERGY RECOVERY -- 7. MANAGEMENT OPTION TO IMPROVE ENERGY RECOVERY -- CONCLUSION -- REFERENCES -- ENERGY AND MATERIAL RECOVERY FROMBIOMASS: THE BIOREFINERY APPROACH. CONCEPTOVERVIEW AND ENVIRONMENTAL EVALUATION -- ABSTRACT -- 1. INTRODUCTION -- 2. APPROACHING BIOREFINERY: DEFINITION,CRITERIA AND CHARACTERISTICS -- 2.1. Background and Current Status -- 2.2. Criteria for Biorefinery System -- 2.3. Fossils vs. Biomass as Raw Materials -- 3. OVERVIEW OF BIOREFINERY FEEDSTOCKS,PROCESSES AND PLATFORMS -- 3.1. Biorefinery Feedstocks -- 3.1.1. Sugar crops -- 3.1.2. Starch crops -- 3.1.3. Oil based materials -- 3.1.4. Grasses -- 3.1.5. Lignocellulosic materials -- 3.1.6. Organic residues and others -- 3.2. Technological Processes -- 3.2.1. Thermochemical processes -- 3.2.2. Biochemical processes -- 3.2.3. Mechanical/physical processes -- 3.2.4. Chemical processes -- 3.3. Platforms -- 3.3.1. Biogas -- 3.3.2. Syngas -- 3.3.3. Hydrogen -- 3.3.4. C6 sugars -- 3.3.5. C5 sugars -- 3.3.6. Levulinic acid -- 3.3.7. Furfural -- 3.3.8. Pyrolytic liquid -- 3.3.9. Vegetable oil -- 3.3.10. Organic juice -- 4. LIFE CYCLE ASSESSMENT OF BIOREFINERY SYSTEMS:A CASE STUDY -- 4.1. Introduction to LCA -- 4.2. Goal and Scope Definition -- 4.2.1. Biorefinery: scope and system boundaries -- 4.2.2. Biorefinery material products -- 4.2.3. Biorefinery energy products -- 4.2.4. Fossil reference system -- 4.2.5. Functional unit -- 4.2.6 Allocation -- 4.3. Life Cycle Impact Assessment -- 4.3.1. Results and interpretation -- 4.3.2. Allocation results -- 5. CONCLUSION -- REFERENCES -- PINCH TECHNOLOGY FOR WASTE HEAT RECOVERYAPPLICATIONS IN OIL INDUSTRY -- INTRODUCTION -- TARGETING USING GRAPHICAL METHOD -- Constructing the Composite Curves -- TARGETING USING ALGEBRAIC METHOD. 327 $aInformation needed -- 1. Constructing Temperature Iinterval Diagram -- 2. Constructing Tables of Exchangeable Heat Loads and Cooling Capacities -- 3. Constructing Thermal Cascade Diagrams -- TARGETING USING MATHEMATICAL PROGRAMMING METHOD -- CONSTRUCTING THE GRAND COMPOSITE CURVE (G.C.C) -- Multiple Utility Targeting/Selection using Grand Composite Curve (GCC) -- Understanding and Applying the Grand Composite Curve -- HEAT EXCHANGERS NETWORK (HEN) SYNTHESIS -- The Pinch Design Method -- HEN DESIGN METHOD -- Four Streams Problem Example -- Start at the Pinch -- The CP(FCp) inequality for individual matches -- The CP(FCp) table -- The "tick-off" heuristic -- Streams Splitting -- PART II. HEAT INTEGRATION APPLICATIONS IN OIL INDUSTRY -- Oil and Gas Separation Plant Process Description -- Heat Integration Application in Oil and Gas Separation Facility -- CONCLUSION -- REFERENCES -- TREATMENT OF SECONDARY SLUDGEFOR ENERGY RECOVERY -- ABSTRACT -- 1. INTRODUCTION -- 2. SECONDARY SLUDGE TREATMENT METHODS -- 2.1. Incineration -- 2.2. Pyrolysis -- 2.3. Gasification -- 2.4. Direct Liquefaction -- 2.5. Supercritical Water Oxidation (SCWO) -- 2.6. Anaerobic Digestion -- 3. DISCUSSION AND COMPARISON OF TREATMENT METHODS -- 4. CONCLUSIONS -- ACKNOWLEDGMENTS -- REFERENCES -- ENERGY RECOVERY FROM WASTE: COMPARISONOF DIFFERENT TECHNOLOGY COMBINATIONS -- ABSTRACT -- MSW Characteristics and Pre-treatment -- Combustion with Energy Recovery -- Gasification with Energy Recovery -- Pyrolysis with Energy Recovery -- Anaerobic Digestion -- Comparison of Thermal Processes -- Comparison of Integrated Energy Recovery Systems -- CONCLUSION -- REFERENCES -- ENERGY RECOVERY FROM WASTEINCINERATION: LINKING THE SYSTEMSOF ENERGY AND WASTE MANAGEMENT -- ABSTRACT -- INTRODUCTION -- DEVELOPMENT OF WASTE INCINERATION IN SWEDEN -- Historical Development. 327 $aWaste Incineration in Sweden Today -- Waste incineration and district heating -- Waste incineration and combined heat and power production -- Waste and Connection to the Material Market -- CONNECTION BETWEEN COUNTRIES IN THE EUROPEAN UNIONVIA LEGISLATION AND TRADE AND THE IMPACTON THE SWEDISH WASTE INCINCERATION -- European Legislation Affecting Energy and Waste -- European Differences in Waste Management and Use of District Heating -- Impact on Waste Incineration in Sweden of Waste Trade with SomeEuropean Countries -- Impact on Waste Incineration of Trade in Electricity -- DISCUSSION OF TWO POLICY INSTRUMENTS -- Introduction of a Tax on Incinerated Waste in Sweden -- Green Electricity Certificates and Waste Incineration -- MODELS AS DECISION SUPPORT -- Models and How to Handle the Double Function of Waste Incineration -- CONCLUSION -- ACKNOWLEDGMENTS -- REFERENCES -- EXPERIMENTAL ANALYSIS OF A COMBINEDRECOVERY SYSTEM -- ABSTRACT -- INTRODUCTION -- EVAPORATIVE COOLING SYSTEMS -- HEAT PIPE SYSTEMS -- EXPERIMENTAL INSTALLATION -- EXPERIMENTAL MEASUREMENTS -- SENSIBLE HEAT RECOVERED -- Combined System -- Analysis of Results -- Temperature -- Evaporative cooling system -- Analysis of Results -- Heating and cooling mode analysis -- Heat Pipes System -- Analysis of Results -- Temperature -- LATENT HEAT RECOVERED -- Analysis of Results -- Air Flow -- Temperature -- VxT interaction -- TOTAL HEAT RECOVERED -- Evaporative Cooler -- Analysis of Results -- Airflow Analysis -- Temperature -- SUMMARY -- Sensible Heat -- Latent Heat -- Total Heat -- CONCLUSIONS -- ACKNOWLEDGMENTS -- REFERENCES -- ENERGY RECOVERY SYSTEMS FROM INDUSTRIALPLANT WASTE: PLANNING OF AN INDUSTRIAL PARKLOCATED IN THE SOUTH OF ITALY -- ABSTRACT -- INTRODUCTION -- 1. A STRATEGY FOR SUSTAINABLE MANAGEMENTOF INDUSTRIAL PARKS -- 1.1. Environmental Qualification of Industrial Parks. 327 $a1.2. Principles of Industrial Ecology. 330 $aEnergy recovery occurs when the energy that is released from a resource recovery process (i.e., pyrolysis/gasification) is used for another purpose such as to generate steam, fuel or electricity generation. This book examines the energy recovery technologies which use landfill gas to produce energy directly. An overview of a variety of secondary sludge post treatment methods for energy recovery is given, including incineration, gasification, pyrolysis, direct liquefaction, supercritical water oxidation (SCWO) and anaerobic digestion. The several routes that energy recovery can follow from waste are looked at as well, of which the most common is waste direct combustion associated with conventional energy recovery in a steam turbine cycle. Energy recovery in air conditioning systems to promote energy saving and improve environmental quality is also explored in this book. 606 $aWaste products as fuel 615 0$aWaste products as fuel. 676 $a662/.87 701 $aDuBois$b Edgard$01869347 701 $aMercier$b Arthur$01869348 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910974499703321 996 $aEnergy recovery$94477498 997 $aUNINA