LEADER 03464oam 2200721I 450 001 9910973528603321 005 20240410045832.0 010 $a9781040208427 010 $a1040208428 010 $a9780429144400 010 $a0429144407 010 $a9781420011500 010 $a1420011502 024 7 $a10.1201/b18706 035 $a(CKB)3710000000446089 035 $a(EBL)2122534 035 $a(OCoLC)916953896 035 $a(SSID)ssj0001515482 035 $a(PQKBManifestationID)12536043 035 $a(PQKBTitleCode)TC0001515482 035 $a(PQKBWorkID)11481629 035 $a(PQKB)10703183 035 $a(MiAaPQ)EBC2122534 035 $a(OCoLC)913955525 035 $a(EXLCZ)993710000000446089 100 $a20180420d2015 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aModels for dependent time series /$fGranville Tunnicliffe-Wilson, Department of Mathematics and Statistics, Lancaster University, UK; Marco Reale, School of Mathematics and Statistics, University of Canterbury, New Zealand; John Haywood, School of Mathematics and Statistics, Victoria University of Wellington, New Zealand 205 $a1st ed. 210 1$aBoca Raton :$cCRC Press,$d2015. 215 $a1 online resource (320 p.) 225 1 $aMonographs on Statistics and Applied Probability ;$vVolume 142 300 $aA Chapman & Hall book. 311 08$a9780367570521 311 08$a0367570521 311 08$a9781584886501 311 08$a1584886501 320 $aIncludes bibliographical references. 327 $a""Cover""; ""Contents""; ""Preface""; ""Chapter 1: Introduction and overview""; ""Chapter 2: Lagged regression and autoregressive models""; ""Chapter 3: Spectral analysis of dependent series""; ""Chapter 4: Estimation of vector autoregressions""; ""Chapter 5: Graphical modeling of structural VARs""; ""Chapter 6: VZAR: An extension of the VAR model""; ""Chapter 7: Continuous time VZAR models""; ""Chapter 8: Irregularly sampled series""; ""Chapter 9: Linking graphical, spectral and VZAR methods""; ""References"" 330 $aModels for Dependent Time Series addresses the issues that arise and the methodology that can be applied when the dependence between time series is described and modeled. Whether you work in the economic, physical, or life sciences, the book shows you how to draw meaningful, applicable, and statistically valid conclusions from multivariate (or vector) time series data.The first four chapters discuss the two main pillars of the subject that have been developed over the last 60 years: vector autoregressive modeling and multivariate spectral analysis. These chapters provide the foundational mater 410 0$aMonographs on statistics and applied probability (Series) ;$vVolume 142. 606 $aTime-series analysis 606 $aAutoregression (Statistics) 606 $aMathematical statistics 615 0$aTime-series analysis. 615 0$aAutoregression (Statistics) 615 0$aMathematical statistics. 676 $a519.5/5 676 $a519.55 700 $aTunnicliffe-Wilson$b Granville$01222049 702 $aReale$b Marco 702 $aHaywood$b John$c(Mathematics professor), 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910973528603321 996 $aModels for dependent time series$94327481 997 $aUNINA