LEADER 01273nam0 22002891i 450 001 UON00317993 005 20231205104127.869 010 $a58-7550-052-2 100 $a20081203d1996 |0itac50 ba 101 $arus 102 $aRU 105 $a|||| 1|||| 200 1 $aPervoe stoletie sibirskich gorodov 17. vek$fOtvetstv. red. N.N. Pokrovskij$gIzd. pogtovili N.D. Zol'nikova, A.I. Mal'cev, D.Ja. Rezun$gpri u?astii A.A. Brodnikova i I.Ju. Prosekova 210 $aNovosibirsk$cSibirskij chronograf$d1996 215 $a190 p.$d29 cm. 410 1$1001UON00318904$12001 $aIstorija Sibiri$ePervoistocniki$1210 $aNovosibirsk$cChronograf$v7 606 $aSIBERIA$xStoria$xSec. 17.$3UONC038711$2FI 620 $aRU$dNovosibirsk$3UONL000122 676 $a957$cSiberia. Russia asiatica$v21 702 1$aPOKROVSKIJ$bNikolaj N.$3UONV110670 712 $aSibirskij chronograf$3UONV274904$4650 801 $aIT$bSOL$c20240220$gRICA 899 $aSIBA - SISTEMA BIBLIOTECARIO DI ATENEO$2UONSI 912 $aUON00317993 950 $aSIBA - SISTEMA BIBLIOTECARIO DI ATENEO$dSI EO DUOMO IX D 0758 $eSI EO 41172 5 0758 996 $aPervoe stoletie sibirskich gorodov 17. vek$91765745 997 $aUNIOR LEADER 03316nam 2200721 a 450 001 9910972934603321 005 20200520144314.0 010 $a9780226662237 010 $a0226662233 010 $a9781299104655 010 $a1299104657 024 7 $a10.7208/9780226662237 035 $a(CKB)1000000000411136 035 $a(EBL)408237 035 $a(OCoLC)437247587 035 $a(SSID)ssj0000139320 035 $a(PQKBManifestationID)11136704 035 $a(PQKBTitleCode)TC0000139320 035 $a(PQKBWorkID)10010602 035 $a(PQKB)11190194 035 $a(MiAaPQ)EBC408237 035 $a(DE-B1597)535859 035 $a(OCoLC)781253693 035 $a(DE-B1597)9780226662237 035 $a(Au-PeEL)EBL408237 035 $a(CaPaEBR)ebr10230009 035 $a(CaONFJC)MIL441715 035 $a(Perlego)1851258 035 $a(EXLCZ)991000000000411136 100 $a19970411d1997 uy 0 101 0 $aeng 135 $aurcn||||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aDimension theory in dynamical systems $econtemporary views and applications /$fYakov B. Pesin 205 $a1st ed. 210 $aChicago $cUniversity of Chicago Press$d1997 215 $a1 online resource (320 p.) 225 1 $aChicago lectures in mathematics series 300 $aDescription based upon print version of record. 311 08$a9780226662220 311 08$a0226662225 311 08$a9780226662213 311 08$a0226662217 320 $aIncludes bibliographical references (p. 295-300) and index. 327 $apt. 1. Caratheodory dimension characteristics -- pt. 2. Applications to dimension theory and dynamical systems. 330 $aThe principles of symmetry and self-similarity structure nature's most beautiful creations. For example, they are expressed in fractals, famous for their beautiful but complicated geometric structure, which is the subject of study in dimension theory. And in dynamics the presence of invariant fractals often results in unstable "turbulent-like" motions and is associated with "chaotic" behavior. In this book, Yakov Pesin introduces a new area of research that has recently appeared in the interface between dimension theory and the theory of dynamical systems. Focusing on invariant fractals and their influence on stochastic properties of systems, Pesin provides a comprehensive and systematic treatment of modern dimension theory in dynamical systems, summarizes the current state of research, and describes the most important accomplishments of this field. Pesin's synthesis of these subjects of broad current research interest will be appreciated both by advanced mathematicians and by a wide range of scientists who depend upon mathematical modeling of dynamical processes. 410 0$aChicago lectures in mathematics. 606 $aDimension theory (Topology) 606 $aDifferentiable dynamical systems 615 0$aDimension theory (Topology) 615 0$aDifferentiable dynamical systems. 676 $a515/.352 686 $aSK 290$2rvk 700 $aPesin$b Ya. B$0319209 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910972934603321 996 $aDimension theory in dynamical systems$94361114 997 $aUNINA