LEADER 11024nam 2200541 450 001 9910627253803321 005 20230317171746.0 010 $a3-658-38910-9 035 $a(MiAaPQ)EBC7127768 035 $a(Au-PeEL)EBL7127768 035 $a(CKB)25219376200041 035 $a(PPN)265863619 035 $a(EXLCZ)9925219376200041 100 $a20230317d2023 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aFundamentals of technical thermodynamics $etextbook for engineering students /$fMartin Dehli, Ernst Doering and Herbert Schedwill 210 1$aWiesbaden, Germany :$cSpringer,$d[2023] 210 4$dİ2023 215 $a1 online resource (622 pages) 311 08$aPrint version: Dehli, Martin Fundamentals of Technical Thermodynamics Wiesbaden : Springer Fachmedien Wiesbaden GmbH,c2022 9783658389093 320 $aIncludes bibliographical references (pages 592-599) and index. 327 $aIntro -- Foreword -- Table of Contents -- Important Formula Characters -- Authors Vita -- 1 Basic Thermodynamic Terms -- 1.1 Applications of Thermodynamics -- 1.2 System -- 1.3 State, State Variables, Changes of State -- 1.4 Process, Process Variables -- 2 The First Law of Thermodynamics -- 2.1 The Principle of Conservation of Energy -- 2.2 Potential Energy -- 2.3 Kinetic Energy -- 2.4 Work -- 2.4.1 Volume Change Work -- 2.4.2 Coupling Work -- 2.4.3 Shift Work -- 2.4.4 Pressure Change Work -- 2.4.5 Friction Work -- 2.5 Thermal Energy -- 2.5.1 Internal Energy -- 2.5.2 Heat -- 2.5.3 Enthalpy -- 2.6 Energy Balances -- 2.6.1 Energy Balance for the Closed System -- 2.6.2 Energy Balance for the Open System -- 2.7 Heat Capacity -- 2.7.1 Specific Heat Capacity -- 2.7.2 The Specific Heat Capacity of Gases -- 2.8 Fluid Mechanics -- 2.8.1 General Aspects -- 2.8.2 Flow Shapes -- 2.8.3 Friction and Roughness -- 2.8.4 Individual Resistances -- 2.8.5 Equivalent Pipe Length -- 3 The Second Law of Thermodynamics -- 3.1 The Statement of the Second Law -- 3.1.1 Reversible and Irreversible Processes -- 3.1.2 Quasi-Static Changes of State -- 3.2 Irreversible Processes -- 3.2.1 Friction -- 3.2.2 Temperature Equalisation -- 3.2.3 Pressure Equalisation -- 3.3 Entropy -- 3.3.1 Reversible Substitute Processes of Adiabatic Processes -- 3.3.2 The Calculation of the Entropy Change -- 3.3.3 Entropy as a State Variable, Total Differential -- 3.4 The Entropy Change of Irreversible Processes -- 3.4.1 Friction -- 3.4.2 Temperature Equalisation -- 3.4.3 Pressure Equalisation -- 3.4.4 Throttling -- 3.5 Non-Adiabatic Process and Reversible Substitute Process -- 3.5.1 Isentropic Change of State -- Interpretations of Entropy -- 3.5.2 Entropy Diagrams -- 3.5.3 Circular Integral, Thermodynamic Temperature -- 3.5.4 Dissipative Energy -- 4 Ideal Gases -- 4.1 Thermal Equation of State. 327 $a4.1.1 Law of Boyle and Mariotte -- 4.1.2 Law of Gay-Lussac -- 4.1.3 Physical Norm State -- 4.1.4 Gas Thermometer -- 4.1.5 Specific Gas Constant -- 4.1.6 Universal Gas Constant -- 4.2 Caloric State Variables of Ideal Gases -- 4.2.1 Internal Energy -- 4.2.2 Enthalpy -- 4.2.3 Entropy -- 4.3 Changes of State -- 4.3.1 Isochoric Change of State -- 4.3.2 Isobaric Change of State -- 4.3.3 Isothermal Change of State -- 4.3.4 Isentropic Change of State -- 4.3.5 Polytropic Change of State -- 4.3.6 Changes of State with Variable Mass -- 4.4 Specific Thermal Energy and Specific Work in the T,s Diagram -- 4.5 Mixtures of Ideal Gases -- 4.5.1 The Mixing Process in the Closed System -- 4.5.2 The Mixing Process Without Total Volume Change -- 4.5.3 The Mixing Process Without Temperature Change, Pressure Change and Total Volume Change -- 4.5.4 The Mixing Process in the Open System -- 4.6 Dynamics of Ideal Gases: Compressible Stationary Gas Flow -- 4.6.1 Introduction -- 4.6.2 Velocity of Sound and Propagation of Sound -- 4.6.3 Energy Equation and Bernoulli Equation of Compressible One-Dimensional Ideal Gas Flow -- 4.6.4 Stagnation State Variables and Critical State -- 4.6.5 The Velocity Diagram of the Specific Energy Equation -- 4.6.6 Flow Function -- 4.6.7 Isentropic Gas Flow in Nozzles and Orifices -- 4.6.8 Accelerated Compressible Flow -- 4.6.9 Compression Shock -- 5 Real Gases and Vapors -- 5.1 Properties of Vapors -- 5.1.1 Phase Transitions -- 5.1.2 Two-Phase Regions -- 5.1.3 Boiling and Condensing -- 5.1.4 Evaporation and Thawing -- 5.1.5 Liquid -- 5.1.6 Two-Phase Liquid-Vapor State -- 5.1.7 Superheated Vapor -- 5.2 State Diagrams -- 5.2.1 The p,v,T Surface -- 5.2.2 The T,s Diagram -- 5.2.3 The h,s Diagram -- 5.3 Thermal Equations of State -- 5.3.1 The van der Waals Equation -- 5.3.2 The Boundary Curve and the Maxwell Relation. 327 $a5.3.3 The Reduced van der Waals Equation -- 5.3.4 Different Approaches -- 5.3.5 Virial Coefficients -- 5.4 Calculation of State Variables -- Property Tables -- 5.4.1 The Caloric State Variables -- 5.4.2 The Specific Heat Capacities cp and cv -- 5.4.3 The Isentropic Exponent and the Isothermal Exponent -- 5.4.4 The Clausius-Clapeyron Equation -- 5.4.5 Free Energy and Free Enthalpy -- 5.4.5.1 General -- 5.4.5.2 A g,s Diagram for Water and Steam -- 5.4.6 The Joule-Thomson Effect -- 6 Thermal Machines -- 6.1 Classification and Types of Machines -- 6.1.1 Classification According to the Direction of Energy Conversion -- 6.1.2 Classification According to the Construction of the Machines -- 6.1.3 Classification According to the Type of Process Taking Place -- 6.2 Ideal Machines -- 6.2.1 Compression and Expansion in Ideal Machines -- 6.2.2 Multi-Stage Compression and Expansion -- 6.2.3 The Energy Balance for Flow Machines -- 6.2.4 The Energy Balance for Displacement Machines -- 6.3 Energy Balances for Real Machines -- 6.3.1 Internal or Indexed Work -- 6.3.2 Total Work -- 6.3.3 Total Enthalpy -- 6.4 Real Machines -- 6.4.1 The Uncooled Compressor -- 6.4.2 The Cooled Compressor -- 6.4.3 Piston Compressor -- 6.4.4 Turbo Compressor -- 6.4.5 Gas and Steam Turbines -- 6.5 Efficiencies -- 6.5.1 Comparison Processes -- 6.5.2 The Internal Efficiency -- 6.5.3 The Mechanical Efficiency -- 6.5.4 The Total Efficiency -- 6.5.5 The Isentropic Efficiency -- 6.5.6 The Isothermal Efficiency -- 6.5.7 The Polytropic Efficiency -- 7 Cyclic Processes -- 7.1 Cyclic Process Work, Heat Input and Heat Output -- 7.2 Right-Hand and Left-Hand Cyclic Processes -- 7.3 The Theory of Right-Hand Cyclic Processes -- 7.3.1 Conversion of Thermal to Mechanical Energy -- 7.3.2 Thermal Efficiency -- 7.3.3 Right-Hand Carnot Process -- 7.3.4 Effect of Irreversible Processes -- 7.3.5 Carnot Factor. 327 $a7.4 Technically Used Right-Hand Cyclic Processes -- 7.4.1 Seiliger Process, Otto Process, Diesel Process, Generalised Diesel Process -- 7.4.2 Joule Process -- 7.4.3 Ericsson Process -- 7.4.4 Stirling Process -- 7.4.5 Single-Polytropic Carnot Process -- 7.4.6 Gas Expansion Process -- 7.4.7 Clausius-Rankine Process -- 7.5 Comparative Evaluation of Right-Hand Cyclic Processes -- 7.5.1 Process Variables and Cyclic Processes -- 7.5.2 Mechanical Effort Ratios and Thermal Effort Ratios -- 7.5.3 Evaluation Criteria For Important Thermodynamic Cyclic Processes -- 7.5.3.1 General Thermodynamic Relations -- 7.5.3.2 Examples -- 7.5.3.3 Graphical Representation of the Thermodynamic Relations -- 7.5.3.4 Cyclic Process Calculations for Real Fluids -- 7.6 Left-Hand Cyclic Processes -- 7.6.1 Performance Number -- 7.6.2 Left-Hand Carnot Process -- 7.6.3 Left-Hand Joule Process -- 7.6.4 Gas Expansion Process as a Left-Hand Cycle Process -- 7.6.5 Cold Vapor Compression Process -- 8 Exergy -- 8.1 Energy and Exergy -- 8.1.1 Exergy of Heat -- 8.1.2 Exergy of Bound Energy -- 8.1.3 Exergy of Temperature Change Heat -- 8.1.4 Exergy of Volume Change Work -- 8.1.5 Exergy of Shift Work -- 8.1.6 Exergy of Pressure Change Work -- 8.1.7 Exergy of Internal Energy -- 8.1.8 Exergy of Enthalpy -- 8.1.9 Exergy of Free Energy -- 8.1.10 Exergy of Free Enthalpy -- 8.1.11 Difference between EU and EF -- 8.1.12 Difference between EH and EG -- 8.1.13 Free Energy and Free Enthalpy as Thermodynamic Potentials -- 8.2 Exergy and Anergy -- 8.2.1 Anergy in a p, V Diagram and in a T,S Diagram -- 8.2.2 Anergy-Free Energies -- 8.3 Exergy Loss -- 8.3.1 Irreversibility and Exergy Loss -- 8.3.2 Exergy Loss and Anergy Gain -- 8.3.3 Exergetic Efficiencies -- 9 Heat Transfer -- 9.1 Heat Radiation -- 9.1.1 Stefan-Boltzmann Law -- 9.1.2 Kirchhoff 's Law -- 9.1.3 Planck's Radiation Law. 327 $a9.1.4 Wien's Displacement Law -- 9.1.5 Lambert's Cosine Law -- 9.1.6 Irradiance Number -- 9.2 Radiation Exchange -- 9.2.1 Cavity Method -- 9.2.2 Envelopment of One Surface by Another -- 9.2.3 Two Parallel Surfaces of Equal Size -- 9.2.4 Matrix Representation -- 9.3 Stationary One-Dimensional Heat Conduction -- 9.3.1 Plane Wall -- 9.3.2 Pipe Wall -- 9.4 Instationary One-Dimensional Heat Conduction -- 9.4.1 Plane Single-Layer Wall -- 9.4.2 Semi-Infinite Body -- 9.5 Heat Transfer by Convection -- 9.5.1 Heat Transfer Coefficient -- 9.5.2 Similarity Theory -- 9.5.3 Reynolds Analogy -- 9.5.4 Prandtl Analogy -- 9.5.5 Power Number Approaches for Laminar and Turbulent Flow -- 9.5.6 Approaches for Phase Transitions -- 9.6 Over-All Heat Transfer -- 9.6.1 Over-All Heat Transfer Coefficient -- 9.6.2 Fin Efficiency and Area Efficiency -- 9.6.3 Mean Temperature Difference -- 9.6.4 Operating Characteristic (Effectiveness) -- 9.7 Finned Heat Transfer Surfaces -- 9.7.1 Straight Fin with Rectangular Cross-Section -- 9.7.2 Circular Fin with Rectangular Cross-Section -- 9.8 Partition Wall Heat Exchangers -- 9.8.1 Unidirectional Flow Heat Exchanger -- 9.8.2 Counterflow Heat Exchanger -- 9.8.3 Crossflow Heat Exchanger -- 9.8.4 Heat Transfer with Phase Transition in a Heat Exchanger -- 9.9 Evaluation and Design -- 9.9.1 Correction Factor for a Crossflow Heat Exchanger -- 9.9.2 Representation of the Operating Characteristic -- 9.9.3 Longitudinal Heat Conduction in a Plane Partition Wall -- 9.9.4 Design Diagram -- 10 Humid Air -- 10.1 State Variables of Humid Air -- 10.1.1 Relative Humidity -- 10.1.2 Humidity Ratio and Saturation -- 10.1.3 Specific Enthalpy -- 10.2 Changes of State of Humid Air -- 10.2.1 Temperature Change -- 10.2.2 Humidification and Dehumidification -- 10.2.3 Mixing of Two Humid Air Quantities -- 10.3 The h,x Diagram of Mollier -- 10.3.1 Temperature Change. 327 $a10.3.2 Humidification and Dehumidification. 606 $aThermodynamics 606 $aThermodynamics$vTextbooks 606 $aEngineering students 615 0$aThermodynamics. 615 0$aThermodynamics 615 0$aEngineering students. 676 $a536.7 700 $aDehli$b Martin$01267185 702 $aDo?ring$b Ernst 702 $aSchedwill$b Herbert 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910627253803321 996 $aFundamentals of technical thermodynamics$93064930 997 $aUNINA LEADER 05372nam 2200697Ia 450 001 9910971308503321 005 20200520144314.0 010 $a9786612654343 010 $a9781282654341 010 $a1282654349 010 $a9781444325041 010 $a1444325043 035 $a(CKB)2670000000032038 035 $a(EBL)547207 035 $a(OCoLC)657660076 035 $a(SSID)ssj0000430374 035 $a(PQKBManifestationID)11305635 035 $a(PQKBTitleCode)TC0000430374 035 $a(PQKBWorkID)10456127 035 $a(PQKB)10489771 035 $a(MiAaPQ)EBC547207 035 $a(Au-PeEL)EBL547207 035 $a(CaPaEBR)ebr10399069 035 $a(CaONFJC)MIL265434 035 $a(Perlego)2788559 035 $a(EXLCZ)992670000000032038 100 $a20100318d2010 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aUnsaturated soils $ea fundamental interpretation of soil behaviour /$fE.J. Murray, V. Sivakumar 205 $a1st ed. 210 $aChichester, West Sussex, U.K. ;$aAmes, Iowa $cWiley-Blackwell$dc2010 215 $a1 online resource (304 p.) 300 $aDescription based upon print version of record. 311 08$a9781444332124 311 08$a1444332120 320 $aIncludes bibliographical references and index. 327 $aUnsaturated Soils; Contents; Preface; Acknowledgements; Introduction; Symbols; 1 Properties of Unsaturated Soils; 1.1 Nature and genesis of unsaturated soils; 1.2 Soil variables; 1.3 Particle properties; 1.4 Phase properties and interactions; 1.5 Soil structure; 1.6 Experimental techniques for examining pore size distribution; 1.7 Pore size distribution; 1.8 Conclusions; 2 Suction Measurement and Control; 2.1 Introduction; 2.2 Techniques for measurement of suction; 2.3 Control of suction in laboratory tests; 2.4 Conclusions; 3 Laboratory Techniques; 3.1 Introduction 327 $a3.2 Material selection and specimen preparation3.3 Experimental techniques for volume change and strength measurements; 3.4 Essential measurements; 3.5 Further details of triaxial and stress path testing techniques; 3.6 Conclusions; 4 Background to the Stresses, Strains, Strength, Volume Change and Modelling of Unsaturated Soil; 4.1 Introduction; 4.2 Stresses in soils; 4.3 Strains in soils; 4.4 Constitutive modelling; 4.5 Critical state framework for saturated soils; 4.6 The constitutive Barcelona Basic Model for unsaturated soils 327 $a4.7 Extended constitutive and elasto-plastic critical state frameworks for unsaturated soils4.8 Concluding remarks; 5 Thermodynamics of Soil Systems; 5.1 Introduction; 5.2 Outline of thermodynamic principles and systems; 5.3 Introduction to equilibrium and meta-stable equilibrium; 5.4 Variables of state; 5.5 Extensive and intensive variables; 5.6 The laws of thermodynamics; 5.7 Thermodynamic potentials; 5.8 Thermodynamic potentials in practice; 5.9 Conjugate thermodynamic pairings; 5.10 Influence of a gravitational field; 5.11 Concluding remarks 327 $a6 Equilibrium Analysis and Assumptions in Triaxial Testing6.1 Introduction; 6.2 The minimum principles for the potentials; 6.3 Isotropic loading conditions; 6.4 Anisotropic loading conditions; 6.5 Work input and the thermodynamic potential; 6.6 The thermodynamic potential and axis translation; 6.7 The thermodynamic potential and an aggregated soil structure; 6.8 Conclusions; 7 Enthalpy and Equilibrium Stress Conditions in Unsaturated Soils; 7.1 Introduction; 7.2 Role of enthalpy; 7.3 Enthalpy and Terzaghi's effective stress for saturated soils; 7.4 Enthalpy of unsaturated soils 327 $a7.5 The significance of ?7.6 Stress state in unsaturated soils; 7.7 Alternative equilibrium analysis; 7.8 Graphical representation of stress state in unsaturated soils; 7.9 Stress state variables and conjugate volumetric variables; 7.10 Hysteresis, collapse and discontinuities in soil behaviour; 7.11 Conclusions; 8 Shear Strength and Compression Characteristics of Unsaturated Soils; 8.1 Introduction; 8.2 Shear strength and critical state characteristics of unsaturated soils; 8.3 Equivalent strength parameters; 8.4 Compression and critical state characteristics of unsaturated kaolin 327 $a8.5 Modelling of unsaturated kaolin 330 $aAn understanding of the mechanical properties of unsaturated soils is crucial for geotechnical engineers worldwide, as well as to those concerned with the interaction of structures with the ground. This book deals principally with fine-grained clays and silts, or soils containing coarser sand and gravel particles but with a significant percentage of fines. The study of unsaturated soil is a practical subject, linking fundamental science to nature. Soils in general are inherently variable and their behaviour is not easy to analyse or predict, and unsaturated soils raise the complexity to a hi 606 $aSoil mechanics 606 $aZone of aeration 615 0$aSoil mechanics. 615 0$aZone of aeration. 676 $a624.1/5136 700 $aMurray$b E. J$g(Edward John),$f1949-$01805552 701 $aSivakumar$b V$01805553 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910971308503321 996 $aUnsaturated soils$94354224 997 $aUNINA