LEADER 04432nam 22005535 450 001 9910971121203321 005 20250725082003.0 010 $a1-4612-4176-6 024 7 $a10.1007/978-1-4612-4176-8 035 $a(CKB)3400000000090734 035 $a(SSID)ssj0001297280 035 $a(PQKBManifestationID)11724810 035 $a(PQKBTitleCode)TC0001297280 035 $a(PQKBWorkID)11363388 035 $a(PQKB)10222874 035 $a(DE-He213)978-1-4612-4176-8 035 $a(MiAaPQ)EBC3075618 035 $a(PPN)238036936 035 $a(EXLCZ)993400000000090734 100 $a20121227d1995 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 13$aAn Introduction to the Theory of Groups /$fby Joseph J. Rotman 205 $a4th ed. 1995. 210 1$aNew York, NY :$cSpringer New York :$cImprint: Springer,$d1995. 215 $a1 online resource (XV, 517 p.) 225 1 $aGraduate Texts in Mathematics,$x2197-5612 ;$v148 300 $aBibliographic Level Mode of Issuance: Monograph 311 08$a0-387-94285-8 311 08$a1-4612-8686-7 320 $aIncludes bibliographical references and index. 327 $a1 Groups and Homomorphisms -- Permutations -- Cycles -- Factorization into Disjoint Cycles -- Even and Odd Permutations -- Semigroups -- Groups -- Homomorphisms -- 2 The Isomorphism Theorems -- Subgroups -- Lagrange?s Theorem -- Cyclic Groups -- Normal Subgroups -- Quotient Groups -- The Isomorphism Theorems -- Correspondence Theorem -- Direct Products -- 3 Symmetric Groups and G-Sets -- Conjugates -- Symmetric Groups -- The Simplicity of An -- Some Representation Theorems -- G-Sets -- Counting Orbits -- Some Geometry -- 4 The Sylow Theorems -- p-Groups -- The Sylow Theorems -- Groups of Small Order -- 5 Normal Series -- Some Galois Theory -- The Jordan-Hölder Theorem -- Solvable Groups -- Two Theorems of P. Hall -- Central Series and Nilpotent Groups -- p-Groups -- 6 Finite Direct Products -- The Basis Theorem -- The Fundamental Theorem of Finite Abelian Groups -- Canonical Forms; Existence -- Canonical Forms; Uniqueness -- The Krull?Schmidt Theorem -- Operator Groups -- 7 Extensions and Cohomology -- The Extension Problem -- Automorphism Groups -- Semidirect Products -- Wreath Products -- Factor Sets -- Theorems of Schur-Zassenhaus and Gaschütz -- Transfer and Burnside?s Theorem -- Projective Representations and the Schur Multiplier -- Derivations -- 8 Some Simple Linear Groups -- Finite Fields -- The General Linear Group -- PSL(2, K) -- PSL(m, K) -- Classical Groups -- 9 Permutations and the Mathieu Groups -- Multiple Transitivity -- Primitive G-Sets -- Simplicity Criteria -- Affine Geometry -- Projective Geometry -- Sharply 3-Transitivc Groups -- Mathieu Groups -- Steiner Systems -- 10 Abelian Groups -- Basics -- Free Abelian Groups -- Finitely Generated Abelian Groups -- Divisible and Reduced Groups -- Torsion Groups -- Subgroups of ? -- Character Groups -- 11 Free Groups and Free Products -- Generators and Relations -- SemigroupInterlude -- Coset Enumeration -- Presentations and the Schur Multiplier -- Fundamental Groups of Complexes -- Tietze?s Theorem -- Covering Complexes -- The Nielscn-Schreier Theorem -- Free Products -- The Kurosh Theorem -- The van Kampen Theorem -- Amalgams -- HNN Extensions -- 12 The Word Problem -- Turing Machines -- The Markov?Post Theorem -- The Novikov?Boone?Britton Theorem: Sufficiency of Boone?s Lemma -- Cancellation Diagrams -- The Novikov?Boone?Britton Theorem: Necessity of Boone?s Lemma -- The Higman Imbedding Theorem -- Some Applications -- Epilogue -- Appendix I Some Major Algebraic Systems -- Appendix II Equivalence Relations and Equivalence Classes -- Appendix III Functions -- APPENDIX IV Zorn?s Lemma -- APPENDIX V Countability -- APPENDIX VI Commutative Rings -- Notation. 410 0$aGraduate Texts in Mathematics,$x2197-5612 ;$v148 606 $aGroup theory 606 $aGroup Theory and Generalizations 615 0$aGroup theory. 615 14$aGroup Theory and Generalizations. 676 $a512.2 700 $aRotman$b Joseph J$4aut$4http://id.loc.gov/vocabulary/relators/aut$058666 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910971121203321 996 $aIntroduction to the theory of groups$9376006 997 $aUNINA