LEADER 01724nam 2200421 450 001 9910438324203321 005 20221206182106.0 024 7 $a10.4271/r-114 035 $a(CKB)4340000000240173 035 $a(CaBNVSL)mat08854937 035 $a(IDAMS)0b0000648b686052 035 $a(IEEE)8854937 035 $a(EXLCZ)994340000000240173 100 $a20200305d2018 uy 101 0 $aeng 135 $aur|n||||||||| 181 $2rdacontent 182 $2isbdmedia 183 $2rdacarrier 200 10$aFundamentals of vehicle dynamics /$fThomas D. Gillespie 210 1$aWarrendale, PA :$cSociety of Automotive Engineers,$dİ1992. 210 2$a[Piscataqay, New Jersey] :$cIEEE Xplore,$d[1992] 215 $a1 PDF (xxii, 495 pages) $cillustrations 311 $a0-7680-2333-5 320 $aIncludes bibliographical references and index. 327 $aAcceleration performance -- Braking performance -- Road loads -- Ride -- Steady-state cornering -- Suspensions -- The steering system -- Rollover -- Tires. 330 $aThis book provides comprehensive coverage of vehicle dynamics presenting a foundation of engineering principles and analytical methods to explain the performance of an automotive vehicle. Includes details on the basic mechanics governing vehicle performance and familiarizes the reader with analytical methods and terminology. 606 $aMotor vehicles$xDynamics 615 0$aMotor vehicles$xDynamics. 676 $a629.2 700 $aGillespie$b T. D.$g(Thomas D.)$067767 801 0$bCaBNVSL 801 1$bCaBNVSL 801 2$bCaBNVSL 906 $aBOOK 912 $a9910438324203321 996 $aFundamentals of vehicle dynamics$986510 997 $aUNINA LEADER 04837nam 22006255 450 001 9910971117303321 005 20250811094726.0 010 $a1-4612-0903-X 024 7 $a10.1007/978-1-4612-0903-4 035 $a(CKB)3400000000089314 035 $a(SSID)ssj0001297324 035 $a(PQKBManifestationID)11775251 035 $a(PQKBTitleCode)TC0001297324 035 $a(PQKBWorkID)11362351 035 $a(PQKB)10433318 035 $a(DE-He213)978-1-4612-0903-4 035 $a(MiAaPQ)EBC3073428 035 $a(PPN)238033465 035 $a(EXLCZ)993400000000089314 100 $a20121227d1993 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt 182 $cc 183 $acr 200 14$aThe Joy of Sets $eFundamentals of Contemporary Set Theory /$fby Keith Devlin 205 $a2nd ed. 1993. 210 1$aNew York, NY :$cSpringer New York :$cImprint: Springer,$d1993. 215 $a1 online resource (X, 194 p.) 225 1 $aUndergraduate Texts in Mathematics,$x2197-5604 300 $a"With 11 illustrations." 311 08$a0-387-94094-4 311 08$a1-4612-6941-5 320 $aIncludes bibliographical references and index. 327 $a1 Naive Set Theory -- 1.1 What is a Set? -- 1.2 Operations on Sets -- 1.3 Notation for Sets -- 1.4 Sets of Sets -- 1.5 Relations -- 1.6 Functions -- 1.7 Well-Or der ings and Ordinals -- 1.8 Problems -- 2 The Zermelo?Fraenkel Axioms -- 2.1 The Language of Set Theory -- 2.2 The Cumulative Hierarchy of Sets -- 2.3 The Zermelo?Fraenkel Axioms -- 2.4 Classes -- 2.5 Set Theory as an Axiomatic Theory -- 2.6 The Recursion Principle -- 2.7 The Axiom of Choice -- 2.8 Problems -- 3 Ordinal and Cardinal Numbers -- 3.1 Ordinal Numbers -- 3.2 Addition of Ordinals -- 3.3 Multiplication of Ordinals -- 3.4 Sequences of Ordinals -- 3.5 Ordinal Exponentiation -- 3.6 Cardinality, Cardinal Numbers -- 3.7 Arithmetic of Cardinal Numbers -- 3.8 Regular and Singular Cardinals -- 3.9 Cardinal Exponentiation -- 3.10 Inaccessible Cardinals -- 3.11 Problems -- 4 Topics in Pure Set Theory -- 4.1 The Borel Hierarchy -- 4.2 Closed Unbounded Sets -- 4.3 Stationary Sets and Regressive Functions -- 4.4 Trees -- 4.5 Extensions of Lebesgue Measure -- 4.6 A Result About the GCH -- 5 The Axiom of Constructibility -- 5.1 Constructible Sets -- 5.2 The Constructible Hierarchy -- 5.3 The Axiom of Constructibility -- 5.4 The Consistency of V = L -- 5.5 Use of the Axiom of Constructibility -- 6 Independence Proofs in Set Theory -- 6.1 Some Undecidable Statements -- 6.2 The Idea of a Boolean-Valued Universe -- 6.3 The Boolean-Valued Universe -- 6.4 VB and V -- 6.5 Boolean-Valued Sets and Independence Proofs -- 6.6 The Nonprovability of the CH -- 7 Non-Well-Founded Set Theory -- 7.1 Set-Membership Diagrams -- 7.2 The Anti-Foundation Axiom -- 7.3 The Solution Lemma -- 7.4 Inductive Definitions Under AFA -- 7.5 Graphs and Systems -- 7.6 Proof of the Solution Lemma -- 7.7 Co-Inductive Definitions -- 7.8 A Model of ZF- +AFA -- Glossary of Symbols. 330 $aThis book provides an account of those parts of contemporary set theory of direct relevance to other areas of pure mathematics. The intended reader is either an advanced-level mathematics undergraduate, a beginning graduate student in mathematics, or an accomplished mathematician who desires or needs some familiarity with modern set theory. The book is written in a fairly easy-going style, with minimal formalism. In Chapter 1, the basic principles of set theory are developed in a 'naive' manner. Here the notions of 'set', 'union', 'intersection', 'power set', 'rela­ tion', 'function', etc., are defined and discussed. One assumption in writing Chapter 1 has been that, whereas the reader may have met all of these 1 concepts before and be familiar with their usage, she may not have con­ sidered the various notions as forming part of the continuous development of a pure subject (namely, set theory). Consequently, the presentation is at the same time rigorous and fast. 410 0$aUndergraduate Texts in Mathematics,$x2197-5604 606 $aLogic, Symbolic and mathematical 606 $aComputer science$xMathematics 606 $aMathematical Logic and Foundations 606 $aMathematical Applications in Computer Science 615 0$aLogic, Symbolic and mathematical. 615 0$aComputer science$xMathematics. 615 14$aMathematical Logic and Foundations. 615 24$aMathematical Applications in Computer Science. 676 $a511.3 700 $aDevlin$b Keith J$4aut$4http://id.loc.gov/vocabulary/relators/aut$028052 701 $aDevlin$b Keith J$028052 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910971117303321 996 $aThe Joy of Sets$94430576 997 $aUNINA