LEADER 02952oam 2200769I 450 001 9910970845003321 005 20250911110040.0 010 $a9786613909046 010 $a9781040157862 010 $a1040157866 010 $a9780429067419 010 $a0429067410 010 $a9781283596596 010 $a1283596598 010 $a9781439880487 010 $a1439880484 024 7 $a10.1201/b11617 035 $a(CKB)2670000000168339 035 $a(EBL)870702 035 $a(OCoLC)781378070 035 $a(SSID)ssj0000624068 035 $a(PQKBManifestationID)11398368 035 $a(PQKBTitleCode)TC0000624068 035 $a(PQKBWorkID)10656969 035 $a(PQKB)10652796 035 $a(OCoLC)787845970 035 $a(Au-PeEL)EBL870702 035 $a(CaPaEBR)ebr10539006 035 $a(CaONFJC)MIL390904 035 $a(OCoLC)801445342 035 $a(FINmELB)ELB145282 035 $a(MiAaPQ)EBC870702 035 $a(ClickVIEW)49671666 035 $a(EXLCZ)992670000000168339 100 $a20180331d2012 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aHigher order derivatives /$fSatya N. Mukhopadhyay ; in collaboration with P.S. Bullen 205 $a1st ed. 210 $aBoca Raton $cTaylor & Francis$d2012 210 1$aBoca Raton :$cCRC Press,$d2012. 215 $a1 online resource (216 p.) 225 1 $aMonographs and surveys in pure and applied mathematics ;$v144 300 $aA Chapman & Hall book. 311 08$a9781439880470 311 08$a1439880476 320 $aIncludes bibliographical references. 327 $aContents; Preface; Introduction; 1. Higher Order Derivatives; 2. Relations between Derivatives; Bibliography 330 $aThe concept of higher order derivatives is useful in many branches of mathematics and its applications. As they are useful in many places, nth order derivatives are often defined directly. Higher Order Derivatives discusses these derivatives, their uses, and the relations among them. It covers higher order generalized derivatives, including the Peano, d.l.V.P., and Abel derivatives; along with the symmetric and unsymmetric Riemann, Cesaro, Borel, LP-, and Laplace derivatives. Although much work has been done on the Peano and de la Vallee Poussin derivatives, there is a large amount of work to 410 0$aChapman & Hall/CRC monographs and surveys in pure and applied mathematics ;$v144. 606 $aDerivatives (Mathematics) 606 $aDifferential calculus 615 0$aDerivatives (Mathematics) 615 0$aDifferential calculus. 676 $a515/.33 700 $aMukhopadhyay$b Satya N.$0516085 701 $aBullen$b P. S.$f1928-$057279 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910970845003321 996 $aHigher order derivatives$94328399 997 $aUNINA