LEADER 04574nam 22005293 450 001 9910970827103321 005 20231110213436.0 010 $a9781470465247 010 $a1470465248 035 $a(CKB)4100000011975847 035 $a(MiAaPQ)EBC6661106 035 $a(Au-PeEL)EBL6661106 035 $a(OCoLC)1256821473 035 $a(RPAM)22488202 035 $a(EXLCZ)994100000011975847 100 $a20210901d2021 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aLocal Well-Posedness and Break-Down Criterion of the Incompressible Euler Equations with Free Boundary 205 $a1st ed. 210 1$aProvidence :$cAmerican Mathematical Society,$d2021. 210 4$d©2021. 215 $a1 online resource (132 pages) 225 1 $aMemoirs of the American Mathematical Society ;$vv.270 311 08$a9781470446895 311 08$a1470446898 320 $aIncludes bibliographical references. 327 $aCover -- Title page -- Chapter 1. Introduction -- 1.1. Presentation of the problem -- 1.2. Some known results -- 1.3. Main results -- 1.4. Main ideas -- Chapter 2. Tools of paradifferential operators -- 2.1. Paradifferential operators -- 2.2. Functional spaces -- 2.3. Symbolic calculus -- 2.4. Tame estimates in Sobolev space -- 2.5. Tame estimates in Chemin-Lerner spaces -- 2.6. Commutator estimates -- Chapter 3. Parabolic evolution equation -- Chapter 4. Elliptic estimates in a strip -- 4.1. Elliptic boundary problem -- 4.2. Flattening the boundary and paralinearization -- 4.3. Elliptic estimates in Sobolev space -- 4.4. Tame elliptic estimates -- 4.5. Elliptic estimates in Besov space -- 4.6. Interior ^{1, } estimate -- Chapter 5. Dirichlet-Neumann operator -- 5.1. Definition and paralinearization -- 5.2. Sobolev estimate of the remainder -- 5.3. Tame estimate of the remainder -- 5.4. Ho?lder estimate of the remainder -- Chapter 6. New formulation and paralinearization -- 6.1. New formulation -- 6.2. Paralinearization -- Chapter 7. Estimate of the pressure -- 7.1. ² estimate of the pressure -- 7.2. Ho?lder estimate of the pressure -- 7.3. Sobolev estimate of the pressure -- 7.4. Estimate of -- Chapter 8. Estimate of the velocity -- 8.1. Sobolev estimate of the velocity -- 8.2. The estimate of the irrotational part -- 8.3. The estimate of the rotational part -- Chapter 9. Proof of break-down criterion -- 9.1. The ¹ energy estimate -- 9.2. Energy estimate of the trace of the velocity and the free surface -- 9.3. Energy estimate of the vorticity -- 9.4. Nonlinear estimates -- 9.5. Energy functional -- 9.6. Proof of Theorem 1.3 -- Chapter 10. Iteration scheme -- 10.1. Strategy -- 10.2. Iteration scheme -- 10.3. Existence of iteration scheme -- Chapter 11. Uniform energy estimates -- 11.1. Set-up -- 11.2. Energy functional. 327 $a11.3. Estimate of the velocity -- 11.4. Estimate of the pressure -- 11.5. Estimates of the remainder of DN operator -- 11.6. Energy estimates -- 11.7. Nonlinear estimates -- 11.8. Completion of the uniform estimate -- Chapter 12. Cauchy sequence and the limit system -- 12.1. Set-up -- 12.2. Elliptic estimates with a parameter -- 12.3. Energy estimates -- 12.4. The limit system -- Chapter 13. From the limit system to the Euler equations -- Chapter 14. Proof of Theorem 1.1 -- 14.1. Construction of approximate smooth solution -- 14.2. Uniform estimates and existence -- 14.3. Uniqueness of the solution -- Acknowledgement -- Bibliography -- Back Cover. 330 $a"In this paper, we prove the local well-posedness of the free boundary problem for the incompressible Euler equations in low regularity Sobolev spaces, in which the velocity is a Lipschitz function and the free surface belongs to C 3 2+. Moreover, we also present a Beale-Kato-Majda type break-down criterion of smooth solution in terms of the mean curvature of the free surface, the gradient of the velocity and Taylor sign condition"--$cProvided by publisher. 410 0$aMemoirs of the American Mathematical Society 606 $aFluid mechanics 615 0$aFluid mechanics. 676 $a532 700 $aWang$b Chao$0675172 701 $aZhang$b Zhifei$01801086 701 $aZhao$b Weiren$01801087 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910970827103321 996 $aLocal Well-Posedness and Break-Down Criterion of the Incompressible Euler Equations with Free Boundary$94346138 997 $aUNINA