LEADER 01126nam0-2200349---450 001 990008465030403321 005 20220623112835.0 010 $a88-8290-008-8 035 $a000846503 035 $aFED01000846503 035 $a(Aleph)000846503FED01 035 $a000846503 100 $a20070207d2003----km-y0itay50------ba 101 0 $aita$aeng 102 $aIT 105 $aa---a---001yy 200 1 $a<>Villa Farnesina a Roma$d= The Villa Farnesina in Rome$fa cura di / edited by Christoph Luitpold Frommel$gscritti di / text by Giulia Caneva 210 $aModena$cPanini$d2003 215 $a2 v.$cill.$d32 cm 225 1 $aMirabilia Italiae$v12 327 1 $a1.: Atlante storico$a2.: Saggi 610 0 $aRoma$aVilla Farnesina 676 $a728.80945632 700 1$aFrommel,$bChristoph Luitpold$f<1933- >$010871 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990008465030403321 952 $a720 MIRABILIA ITALIAE 12 (1)$bBibl.49737$fFLFBC 952 $a720 MIRABILIA ITALIAE 12 (2)$bBibl.49737$fFLFBC 959 $aFLFBC 996 $aVilla Farnesina a Roma$9729266 997 $aUNINA LEADER 02241cam0-22006011i-450 001 990004714720403321 005 20240419174144.0 035 $aFED01000471472 035 $a(Aleph)000471472FED01 035 $a000471472 100 $a19990604d1977----km-y0itay50------ba 101 0 $aita 102 $aIT 105 $ay-------001yy 200 1 $a<>tramonto della schiavitł nel mondo antico$fEttore Ciccotti$gintroduzione di Mario Mazza 210 $aRoma ; Bari$cLaterza$d1977 215 $a2 v. (LXX, 350 p. compless.)$d18 cm 225 1 $aUniversale Laterza$v410 451 0$1001990006265830403321 451 0$1001990004711020403321 610 0 $aSchiavitł$aStoria$aAntichitą 676 $a306.362093$v23$zita 700 1$aCiccotti,$bEttore$083251 702 1$aMazza,$bMario 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990004714720403321 952 $aFONDO PROFESSOR ANTONIO GUARINO XXI A 159 (1)$bG/2053$fFGBC 952 $aFONDO PROFESSOR ANTONIO GUARINO XXI A 159 (2)$bG/2054$fFGBC 952 $aFCL131(410 bis)$bIst.Fil.Cl.7906$fFLFBC 952 $aFCL131(411 bis)$bIst.Fil.Cl.7906$fFLFBC 952 $aFCL 131 (410)$fFLFBC 952 $aFCL 131 (411)$fFLFBC 952 $aDDR-XXII A 025 (1)$b2816 ddr$fDDR$m21-7734 952 $aDDR-XXII A 025 (1) al. es. 2$b151 ddr$fDDR$m21-7735 952 $aDDR-XXII A 025 (1) al. es. 3$b151 ddr$fDDR$m21-7736 952 $aDDR-XXII A 025 (1) al. es. 4$b151 ddr$fDDR$m21-7737 952 $aDDR-XXII A 025 (1) al. es. 5$b151 ddr$fDDR$m21-7738 952 $aDDR-XXII A 025 (2)$b2816 ddr$fDDR$m21-7739 952 $aDDR-XXII A 025 (2) al. es. 2$b151 ddr$fDDR$m21-7740 952 $aDDR-XXII A 025 (2) al. es. 3$b151 ddr$fDDR$m21-7741 952 $aDDR-XXII A 025 (2) al. es. 4$b151 ddr$fDDR$m21-7742 952 $aDDR-XXII A 025 (2) al. es. 5$b151 ddr$fDDR$m21-7743 952 $aDDR-DeMartino-Cicc-001 (1)$fDDR 952 $aDDR-DeMartino-Cicc-001 (2)$fDDR 952 $aCOLLEZ. 114 (410)$b14837$fFSPBC 952 $aCOLLEZ. 114 (411)$b14838$fFSPBC 959 $aFGBC 959 $aFLFBC 959 $aDDR 959 $aFSPBC 996 $aTramonto della schiavitł nel mondo antico$9177416 997 $aUNINA LEADER 05438nam 22006253 450 001 9910970819103321 005 20231110230425.0 010 $a9781470465346 010 $a1470465345 035 $a(CKB)4100000011975798 035 $a(MiAaPQ)EBC6661102 035 $a(Au-PeEL)EBL6661102 035 $a(OCoLC)1259591042 035 $a(RPAM)22488291 035 $a(EXLCZ)994100000011975798 100 $a20210901d2021 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aEffective Faithful Tropicalizations Associated to Linear Systems on Curves 205 $a1st ed. 210 1$aProvidence :$cAmerican Mathematical Society,$d2021. 210 4$d©2021. 215 $a1 online resource (122 pages) 225 1 $aMemoirs of the American Mathematical Society ;$vv.270 311 08$a9781470447533 311 08$a1470447533 320 $aIncludes bibliographical references and index. 327 $aCover -- Title page -- Chapter 1. Introduction -- Notation and Conventions -- Chapter 2. Preliminaries -- 2.1. Semistable models and semistable pairs -- 2.2. Berkovich spaces -- 2.3. Skeleta associated to strictly semistable models -- 2.4. Skeleta associated to strictly semistable pairs -- 2.5. Some properties of skeleta -- 2.6. Tropical geometry -- 2.7. Faithful tropicalization -- Chapter 3. Good models -- 3.1. Good models of -- 3.2. Theory of divisors on ?-metric graphs -- 3.3. Weighted ?-metric graphs -- 3.4. Skeleton as a weighted ?-metric graph (with a finite graph structure) -- 3.5. Construction of a model of ( , ) -- Chapter 4. Unimodular tropicalization of minimal skeleta for ?2 -- 4.1. Useful lemmas -- 4.2. Fundamental vertical divisors -- 4.3. Stepwise vertical divisors -- 4.4. Edge-base sections and edge-unimodularity sections -- 4.5. Unimodular tropicalization -- Chapter 5. Faithful tropicalization of minimal skeleta for ?2 -- Notation and terminology of Chapter 5 -- 5.1. Separating points on an edge of connected type -- 5.2. Separating points in different edges -- 5.3. Separating vertices -- 5.4. Faithful tropicalization of the minimal skeleton -- Chapter 6. Faithful tropicalization of minimal skeleta in low genera -- 6.1. Genus 0 case -- 6.2. Genus 1 case -- Chapter 7. Faithful tropicalization of arbitrary skeleta -- Notation and terminology of Chapter 7 -- 7.1. Geodesic paths -- 7.2. Stepwise vertical divisor associated to a point in ( ) -- 7.3. Base sections and -unimodularity sections -- 7.4. Good model -- 7.5. Proof of Proposition 7.8 -- 7.6. Proof of Theorem 1.2 -- 7.7. Upper bound for the dimension of the target space -- Chapter 8. Complementary results -- 8.1. Theorem 1.2 is optimal for curves in low genera -- 8.2. A very ample line bundle that does not admit a faithful tropicalization -- 8.3. Comparison with [42]. 327 $aChapter 9. Limit of tropicalizations by polynomials of a bounded degree -- 9.1. Statement of the result -- 9.2. Polynomial of bounded degree that separates two points -- 9.3. Proof of Theorem 1.7 -- Bibliography -- Subject Index -- Symbol Index -- Back Cover. 330 $a"For a connected smooth projective curve of genus g, global sections of any line bundle L with deg(L) 2g 1 give an embedding of the curve into projective space. We consider an analogous statement for a Berkovich skeleton in nonarchimedean geometry: We replace projective space by tropical projective space, and an embedding by a homeomorphism onto its image preserving integral structures (or equivalently, since is a curve, an isometry), which is called a faithful tropicalization. Let be an algebraically closed field which is complete with respect to a nontrivial nonarchimedean value. Suppose that is defined over and has genus g 2 and that is a skeleton (that is allowed to have ends) of the analytification an of in the sense of Berkovich. We show that if deg(L) 3g 1, then global sections of L give a faithful tropicalization of into tropical projective space. As an application, when Y is a suitable affine curve, we describe the analytification Y an as the limit of tropicalizations of an effectively bounded degree"--$cProvided by publisher. 410 0$aMemoirs of the American Mathematical Society 606 $aGeometry, Algebraic 606 $aTropical geometry 606 $aAlgebraic geometry -- Tropical geometry -- Tropical geometry$2msc 606 $aAlgebraic geometry -- Arithmetic problems. Diophantine geometry -- Rigid analytic geometry$2msc 606 $aAlgebraic geometry -- Cycles and subschemes -- Divisors, linear systems, invertible sheaves$2msc 615 0$aGeometry, Algebraic. 615 0$aTropical geometry. 615 7$aAlgebraic geometry -- Tropical geometry -- Tropical geometry. 615 7$aAlgebraic geometry -- Arithmetic problems. Diophantine geometry -- Rigid analytic geometry. 615 7$aAlgebraic geometry -- Cycles and subschemes -- Divisors, linear systems, invertible sheaves. 676 $a516.3/52 686 $a14T05$a14G22$a14C20$2msc 700 $aKawaguchi$b Shu$01799882 701 $aYamaki$b Kazuhiko$01799883 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910970819103321 996 $aEffective Faithful Tropicalizations Associated to Linear Systems on Curves$94344303 997 $aUNINA