LEADER 08758nam 2200625 a 450 001 9910970451503321 005 20251117091626.0 010 $a1-61470-326-4 035 $a(CKB)2550000000059514 035 $a(EBL)3019277 035 $a(SSID)ssj0000568749 035 $a(PQKBManifestationID)12194168 035 $a(PQKBTitleCode)TC0000568749 035 $a(PQKBWorkID)10536410 035 $a(PQKB)11146631 035 $a(MiAaPQ)EBC3019277 035 $a(Au-PeEL)EBL3019277 035 $a(CaPaEBR)ebr10670842 035 $a(OCoLC)759114806 035 $a(BIP)29998629 035 $a(EXLCZ)992550000000059514 100 $a20100503d2011 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aBoron hydrides, high potential hydrogen storage materials /$fUmit B. Demirci and Philippe Miele, editors 205 $a1st ed. 210 $aNew York $cNova Science Publishers$dc2011 215 $a1 online resource (276 p.) 225 1 $aChemistry research and applications 300 $aDescription based upon print version of record. 311 08$a1-61668-361-9 320 $aIncludes bibliographical references and index. 327 $aIntro -- BORON HYDRIDES, HIGH POTENTIAL HYDROGEN STORAGE MATERIALS -- BORON HYDRIDES, HIGH POTENTIAL HYDROGEN STORAGE MATERIALS -- CONTENTS -- PREFACE -- Chapter 1 SOLID-STATE HYDROGEN STORAGE -- Abstract -- Introduction -- 2. Issues Encountering Hydrogen Economy -- 3. Hydrogen Storage Issue -- 3.1 Technical Targets -- 3.2 Physical Methods for Hydrogen Storage -- 3.2.1 High Pressure Storage -- 3.2.2 Cryogenic Storage -- 3.3 Chemical Methods for Hydrogen Storage -- 4. Solids for Hydrogen Storage or Chemical Storage -- 4.1 Adsorption in Porous Materials -- 4.1.1 Activated Carbons including Carbon Nanostructures -- 4.1.2 Hydrogen Physisorption in other Materials -- 4.2 Storage by Absorption -- 4.2.1 Metal Hydrides -- 4.2.2 Complex Hydrides -- 4.2.3 Storage via Chemical Reactions -- Conclusion -- References -- Chapter 2 BORON HYDRIDES -- Abstract -- 1. Introduction -- 2. Boron Compounds -- 2.1 Borides -- 2.2 Boron Hydrides -- 2.3 Boron Halides -- 2.4 Boron-Oxygen Compounds -- 2.5 Boron-Nitrogen Compounds -- 2.6 Other Boron-Based Compounds -- 2.7 Summary -- 3. Borohydrides -- 3.1 All of the Borohydrides -- 3.2 Thermolysis of Borohydrides -- 3.3 Hydrolysis of Borohydrides -- 3.4 Safety Data -- 3.5 Conclusion -- 4. Ammoniaborane and its Derivatives -- 4.1 Ammoniaborane -- 4.2 Amidoboranes -- 4.3 Safety Data -- Conclusion -- References -- Chapter 3 LITHIUM BOROHYDRIDE: SYNTHESIS, PROPERTIES AND THERMAL DECOMPOSITION -- Abstract -- 1. Introduction -- 2. Synthesis Methods -- 3. Crystal Structures -- 4. Ionic Superconduction -- 5. Thermal Decomposition -- 6. Hydrogen Release Enhancement by Catalysts Addition -- 7. Modification of Hydrogen Release by Confinement into Nanoporous Carbons -- Conclusions -- Acknowledgments -- References -- Chapter 4 HYDROGEN CYCLE WITH SODIUM BOROHYDRIDE -- Abstract -- 1. Importance of Sodium Borohydride in Hydrogen Cycle. 327 $a2. Sodium Borohydride Production Techniques -- 2.1. Borax Reactions -- 2.2. Trimetyl Borate Reactions -- 2.3. NaBH4 Reactions -- 3. Dehydrogenation of NaBH4 and its usage as Hydrogen Carrier -- 3.1. Thermal Dehydrogenation -- 3.2. Catalytic Dehydrogenation -- 3.2.1. Alkaline Hydrolysis Solution -- 3.2.2. Water Requirement for Hydrolysis -- 3.2.3. Catalyst Preparation and its Effect on Hydrolysis -- 3.2.4. Supported Materials of Heterogeneous Catalysts -- 3.2.5. Processing Magnetic Catalysts -- 3.2.6. Co-Ni Couple Catalysts and Reaction Mechanism -- 3.2.7. Electrochemical Catalysts -- 3.2.8. Fuel Cell Application of Catalytic Hydrolysis -- 4. NaBO2 Recycle -- 5. NaBO2-Borax Conversion -- 6. Characterization of NaBH4 -- Conclusion -- References -- Chapter 5 POTENTIAL AND LIMITATION OF THE DIRECT BOROHYDRIDE FUEL CELL. SPECIAL EMPHASIS ON THE BOROHYDRIDE OXIDATION REACTION (BOR) MECHANISM AND KINETICS ON GOLD ELECTROCATALYSTS -- Abstract -- 1. Introduction -- 2. Experimental -- 2.1 Reagents and Solutions -- 2.2 On-Line Electrochemical Mass Spectroscopy (OLEMSlems) -- 2.3 Ftir FTIR Spectroscopy -- 2.4 CV and EIS -- 3. The Ideal Reactant for DBFC -- 3.1 Fuel Composition for DBFC -- 3.2 Alternative Reactants -- 3.3 Fuel Monitoring -- 4. Principle of Operation of a DBFC -- 4.1 Basics and Performance -- 4.2 Influence of the Electrode Geometry and Reactant Channel Design -- 4.3 Membrane and Electrode Materials -- 5. Survey of the BOR on Gold -- 5.1 Is Gold Inactive Regarding the Heterogeneous Hydrolysis of BH4- Aanion? -- 5.2 Evidencing the BOR Intermediates on Gold by FTIR Spectroscopy -- 5.3 Towards a Simplified BOR Pathway for Gold Electrodes -- Conclusion -- Acknowledgments -- References -- Chapter 6 CRYSTAL CHEMISTRY OF LIGHT METAL BOROHYDRIDES -- Abstract -- Introduction -- Crystal Structures -- LiBH4 -- NaBH4 -- KBH4 -- NH4BH4 -- Be(BH4)2 -- Mg(BH4)2. 327 $aCa(BH4)2 -- Mn(BH4)2 -- Al(BH4)3 -- LiK(BH4)2 -- MSc(BH4)4 (M = Li, Na) -- MZn2(BH4)5 (M = Li, Na) -- NaZn(BH4)3 -- Structural Evolution under Non-Ambient Conditions -- Diffraction Studies of the Stability Regions and Structure Evolution under External Stimuli -- Phenomenological and Crystal-Chemical Analysis of the Mechanisms of the Phase Transitions -- Crystal Chemistry -- Geometry of the BH4 Group -- BH4?M and BH4?BH4 Contacts -- Chemical Destabilization: Mixed-Cation and Mixed-Anion Borohydrides -- Chemical Destabilization: Substitution in the BH4 Group -- References -- Chapter 7 AMMONIA BORANE: THERMOLYSIS -- Abstract -- 1. Introduction -- 2. Ammonia Borane -- 3. Solid Neat Ammonia Borane Thermolysis -- 3.1 The Induction Period -- 3.2 The First Reaction Step -- 3.3 The Second Reaction Step -- 3.4 The Third Reaction Step -- 4. Thermolysis of Neat Ammonia Borane in Solution -- 5. Catalyzed Ammonia Borane Thermolysis -- 5.1 Catalyzed Solid State Ammonia Borane -- 5.2 Catalyzed Ammonia Borane in Solution -- 6. Ammonia Borane Compounds Thermolysis -- 6.1 Solid State Ammonia Borane Compounds Thermolysis -- 7. Supported Ammonia Borane Thermolysis -- 8. Regeneration of Ammonia Borane Dehydrogenation Products -- Conclusion -- References -- Chapter 8 AMMONIA BORANE: HYDROLYSIS AND ELECTROOXIDATION -- Abstract -- 1. Introduction -- 2. Ammonia Borane Hydrolysis -- 2.1 Concept -- 2.2 State-of-the-Art -- 2.2.1 Transition Metal Catalyst -- 2.2.2 Effective Gravimetric Hydrogen Storage Capacity -- 2.2.3 Recycling of the Reaction by-Products -- 2.3 Ammonia Borane versus Sodium Borohydride -- 3. Ammonia Borane Electrooxidation -- 3.1 Direct Liquid Fuel Cells -- 3.2 Basics -- 3.3 State-of-the-art and Issues -- 3.4 Direct Ammonia Borane Fuel Cell Vversus Direct Borohydride Ffuel Cell -- Conclusion -- References -- Chapter 9 METAL AMIDOBORANES -- Abstract. 327 $aIntroduction -- Syntheses -- Structures and Crystal Chemistry -- 1. Metal Amidoboranes -- 2. Other Amidoborane Complexes -- Dehydrogenation Properties -- 1. Lithium Amidoborane -- 2. Sodium Amidoborane -- 3. Calcium Amidoborane -- 4. Structural Characteristics Responsible for the Dehydrogenation Properties -- 5. Other Amidoborane Complexes -- Conclusions -- Acknowledgment -- References -- Chapter 10 CONCLUSION AND OUTLOOK: WHICH FUTURE FOR BORON HYDRIDES? -- Abstract -- 1. Introduction -- 2. Current Potentials of the Boron Hydrides -- 2.1 Borohydrides -- 2.2 Ammonia Borane and Amidoboranes -- 2.3 Summary -- 3. Always the same Challenges -- 3.1 Hydrogen Production and Distribution -- 3.2 Hydrogen Storage -- 3.3 Summary -- 4. The Most Critical Challenges Facing Boron Hydrides -- 4.1 Effective Storage Capacity -- 4.2 Storage Reversibility -- 4.3 Summary -- 5. Greenness Considerations -- 5.1 Green Chemistry -- 5.2 Greenness of the Boron Hydrides -- 5.3 Summary -- Conclusion and Outlook -- References -- INDEX -- Blank Page. 330 $aBoron hydrides are hydrogen storage materials which are the object of intensive investigation because they pose tangible solution to the hydrogen storage issue. This book reviews research on boron hydrides and gives a general view of the perspectives of application. 410 0$aChemistry research and applications series. 606 $aHydrogen$xStorage$xMaterials 606 $aBoranes 615 0$aHydrogen$xStorage$xMaterials. 615 0$aBoranes. 676 $a665.8/1 701 $aDemirci$b Umit B$01865754 701 $aMiele$b Philippe$01838149 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910970451503321 996 $aBoron hydrides, high potential hydrogen storage materials$94472931 997 $aUNINA LEADER 00841nam 2200277 450 001 996684474903316 005 20251106170130.0 100 $a20251106d1979----km y0itay5003 ba 101 0 $aita 102 $aIT 105 $ay 00 y 200 1 $a[Capitale e oggetto sociale$eosservazioni e problemi$fFrancesco Fenghi] 210 $aMilano$cGiuffrè$d[1979] 215 $a[590]-598 p.$d25 cm 300 $aTitolo dell'intitolazione 300 $aEstratto da: Rivista delle società, anno 24, fasc. 3 (mag.-giu. 1979) 606 0 $aCapitale sociale$2BNCF 676 $a346.450666 700 1$aFENGHI,$bFrancesco$0111537 801 0$aIT$bcba$gREICAT 912 $a996684474903316 951 $aXVI.7.Misc. 238$b240 FBUO$cXVI.7.Misc. 959 $aBK 969 $aFBUO 996 $aCapitale e oggetto sociale$94449797 997 $aUNISA