LEADER 10542nam 2200601 a 450 001 9910970280303321 005 20251116181926.0 010 $a1-62417-528-7 035 $a(CKB)2550000001043657 035 $a(EBL)3021747 035 $a(SSID)ssj0000880392 035 $a(PQKBManifestationID)12334425 035 $a(PQKBTitleCode)TC0000880392 035 $a(PQKBWorkID)10895176 035 $a(PQKB)10598604 035 $a(MiAaPQ)EBC3021747 035 $a(Au-PeEL)EBL3021747 035 $a(CaPaEBR)ebr10683487 035 $a(OCoLC)839388465 035 $a(BIP)33027431 035 $a(EXLCZ)992550000001043657 100 $a20101209d2012 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aGermanium $eproperties, production and applications /$fRegina V. Germanno, editor 205 $a1st ed. 210 $aNew York $cNova Science Publishers$dc2012 215 $a1 online resource (338 p.) 225 1 $aChemical engineering methods and technology 300 $aDescription based upon print version of record. 311 08$a1-61209-205-5 320 $aIncludes bibliographical references and index. 327 $aIntro -- GERMANIUM PROPERTIES, PRODUCTION AND APPLICATIONS -- GERMANIUM PROPERTIES, PRODUCTION AND APPLICATIONS -- CONTENTS -- PREFACE -- DEFECTS IN GERMANIUM: THEORETICAL ASPECTS -- 1.Introduction -- 2.Techniquesforidentificationofdefectsingermanium -- 2.1.Theoreticalmethods -- 2.1.1.Densityfunctionaltheory -- 2.1.2.Boundaryconditions:clustersandsupercells -- 2.1.3.Tacklingthebandgapproblem -- 2.1.4.Calculationofobservables -- 2.2.Experimentalmethods -- 3.Intrinsicdefects -- 3.1.Theself-interstitial -- 3.1.1.Structureandenergetics -- 3.1.2.Ionizationlevels -- 3.1.3.Diffusion -- 3.2.Thevacancy -- 3.2.1.Geometryandelectronicstructure -- 3.2.2.Formationenergies -- 3.3.Thedivacancy -- 3.4.Furthervacancyclustering -- 4.Oxygen -- 4.1.Interstitialoxygen -- 4.2.Oxygendimer -- 4.3.Complexesofself-interstitialswithoxygen -- 4.4.Thermaldonors -- 4.4.1.Earlystateaggregation -- 4.4.2.AtomicStructureofTDD's -- 4.4.3.Electronicstructuremodel -- 4.4.4.Furtherobservables -- 4.5.Thevacancy-oxygencomplex(Acenter) -- 4.5.1.Structureandvibrationalmodes -- 4.5.2.Ionizationlevels -- 4.6.Formation:ametastableVOprecursor -- 4.6.1.Annealing -- 4.7.Vacancy-di-oxygen(VO2)defects -- 4.7.1.Structure -- 4.7.2.Ionizationlevels -- 4.7.3.Localvibrationalmodes -- 5.Hydrogen -- 5.1.Isolatedinterstitialhydrogen -- 5.1.1.Geometry -- 5.1.2.Localvibrationalmodes -- 5.1.3.Ionizationlevels -- 5.2.Hydrogendimer -- 5.3.Interactionofhydrogenwithotherdefects -- 5.4.Vacancy-hydrogen(VmHn)complexes -- 5.5.Hydrogen-inducedplatelets -- 6.Shallowdopantsandrelateddefects -- 6.1.Boron -- 6.2.InterstitialBoron -- 6.2.1.Geometry -- 6.2.2.Ionizationlevels -- 6.3.Borondiffusion -- 6.3.1.Othergroup-IIIacceptors -- 6.4.Group-Vdonors -- 6.5.Donor-vacancycomplexes(E-centers) -- 6.5.1.Structuregeometry -- 6.5.2.Ionizationlevels -- 6.5.3.Diffusion -- 6.6.Furtherdonor-vacancyaggregation. 327 $a6.7.InterstitialPhosphorus -- 6.8.Diffusionofgroup-Vdonors -- 6.8.1.Influenceofthecarboncontent -- 7.Metals -- 7.1.Substitutional(Ms) -- 7.2.InteractionbetweenMsandvacancies(Ms-V) -- 7.3.Self-interstitial-metalcomplexes(I-Ms) -- 7.4.Interstitialmetals(Mi) -- 7.5.Substitutional-Interstitialpairs(Ms-Mi) -- 8.OtherImpurities -- 8.1.Carbon -- 8.2.Nitrogen -- 8.3.Chalcogens -- 9.Differencesbetweendefectsinsiliconandgermanium -- 10.Conclusionandoutlook -- References -- ADefectssignatures:Experimentvs.First-Principlescalculations -- PROPERTIES AND GENERATION BY IRRADIATION OF GERMANIUM POINT DEFECTS IN GE-DOPED SILICA -- ABSTRACT -- 1. INTRODUCTION -- 1.1. SiO2,GeO2 and GeO2-SiO2 Glasses -- 1.2. Point Defects -- 1.3. Photosensitivity and Second Harmonic Generation -- 1.4. Oxygen Deficiency -- 1.4.1. The Oxygen Mono Vacancy -- 1.4.2. Germanium Lone Pair Center (GLPC) -- 1.5. Radiation Effects -- 1.6. Structural Models of the Paramagnetic Point Defects -- 1.7. H(II) Paramagnetic Point Defects -- 1.8. Radiation Induced Absorption Bands -- 1.9. Generation Mechanisms -- 2. MATERIALS -- 2.1. Sol-Gel Preparation Technique -- 2.2. Plasma-Activated Chemical Vapour Deposition -- 2.3. Samples -- 3. GENERATION OF GE PARAMAGNETIC POINT DEFECTS -- 3.1. Induced EPR Activity: General Features -- 3.2. EPR Line Shape of the Ge Related Defects -- 3.3. Decomposition of the Experimental EPR Spectra -- 3.4. Paramagnetic Point Defect Concentrations Induced by Irradiation -- 3.4.1. Type 1 Samples -- 3.4.2. Type 3 Samples -- 3.4.3. Type 4 Samples -- 3.4.4. Type 5 Samples -- 3.4.5. PCVD Samples -- 3.5. Ge(1) Point Defects -- 3.6. Ge(2) and E'Ge Point Defects -- 4. REFRACTIVE INDEX VARIATIONS -- 4.1. Absorption Induced Activity -- 4.2. Dependence of the Refractive Index Changes on Ge(1) Defects -- 5. INDUCED GLPC -- 5.1. PL Spectra of the Induced GLPC. 327 $a5.1.2. PLE Spectra of the Induced GLPC -- 5.1.3. Time Decay Measurements of the Induced ? Band -- 5.1.4. Temperature Dependence of the PL Spectra -- 5.1.5. Time Dependence of the Emission -- 5.1.6. Intersystem Crossing Process in the Induced GLPC -- 5.1.7. Paramagnetic Defects Related to the Induced GLPC -- 5.1.8. GLPC Generation in PCVD Material -- 5.1.9. Discussion on the Emission of the Induced GLPC -- 5.2. Dose Dependence of the Induced Point Defects in Sample B0 -- 5.3. Comparison of the ? and the ? Irradiations -- 5.4. Thermal Stability of the Induced GLPC and PL Profile Modification -- 5.5. Temperature Dependence of the PL Spectra of the Residual GLPC -- 5.6. Time Dependence of the Emission of the Residual GLPC -- 5.7. Intersystem Crossing Process of the Residual GLPC -- CONCLUSION -- REFERENCES -- GERMANIUM ENCAGED FULLERENE-SYNTHESIS, EXTRACTION, THEORETICAL CALCULATION AND THEIR POSSIBLE APPLICATION -- 1. ABSTRACT -- 2. INTRODUCTION -- 3. OVERVIEW -- 4. SYNTHESIS OF Ge ENDOHEDRAL METALLOFULLERENE -- 5. ISOLATION AND PURIFICATION OF Ge ENDOHEDRAL METALLOFULLERENE -- 6. CHARACTERIZATION OF Ge ENDOHEDRAL METALLOFULLERENE -- 7. THEORETICAL CALCULATIONS OF Ge ENDOHEDRAL METALLOFULLERENE -- 7.1. Encapsulation of Ge2 Inside C60 -- 8. APPLICATION OF Ge ENDOHEDRAL METALLOFULLERENE -- ACKNOWLEDGMENTS -- REFERENCES -- CHANGE THE PROPERTIES OF SILICON AND GERMANIUM STRUCTURES WITH FILMS OF OXIDE AND FLUORIDE RARE EARTH ELEMENTS DURING EXTERNAL IMPACTS -- ABSTRACT -- I. INTRODUCTION -- II. EXPERIMENTAL SAMPLES -- A. Fluoride REE Films on Germanium Substrates -- B. Oxide REE Films on Silicon Substrates -- III. KINETIC CHARACTERISTICS OF ELECTROFORMING PROCESS OXIDE AND FLUORIDE REE FILM STRUCTURES -- IV. THE IMPACT OF ELECTRIC FIELD -- A. Structure with Fluoride Rare Earth Elements Films -- 1. Assessment High-Frequency Interface Traps Capacity. 327 $a2. Assessment of Traps Energy Situation in Germanium Band Gap -- 3. Change the Distribution of the Interface States Energy Density in Germanium Band Gap during the Electroforming Process -- B. Structure with Rare Earth Element Oxide Films -- 1. REE Oxides on n-Type Silicon Substrates -- 2. P-type Silicon Structure with Films of Oxides REE -- CONCLUSION -- NOTE -- REFERENCES -- APPLICATIONS OF RF SPUTTERED GEXSI1-X AND GEXSI1-XOY THIN FILMS FOR UNCOOLED INFRARED DETECTORS -- ABSTRACT -- I. INTRODUCTION -- A. Infrared Radiation -- B.Applications of Infrared Radiation -- C. Infrared Detectors -- Photon Detector -- Thermal Detector -- D. Bolometer -- E.Bolometer Figures of Merits -- Spectral Response -- TCR -- Responsivity -- Detectivity -- Noise Equivalent Power (NEP) -- Noise Equivalent TemperatureDifference (NETD) -- F. ThermisterMaterial -- II. THIN FILM DEPOSITION -- A. a-GexSi1-xThin Film Deposition -- B. a-GexSi1-xOyThin Film Deposition -- III. PROPERTIES OF GEXSI1-X AND GEXSI1-XOYTHIN FILM -- IV. APPLICATIONS OF RFSPUTTEREDGEXSI1-X AND GEXSI1-XOY FILMS: MICROBOLOMETER FABRICATION -- V. BOLOMETER CHARACTERIZATION -- VI. PERFORMANCE OF MICROBOLOMETER -- VII. NOISE REDUCTION OF A-GEXSI1-XOY MICROBOLOMETER BY FORMING GAS PASSIVATION -- VIII. EXPERIMENTAL DETAILS FOR FORMING GAS PASSIVATION -- IX. RESULTS OF FORMING GAS PASSIVATION -- CONCLUSION -- REFERENCES -- NEW GENERATION GERMANIUM DETECTORS FOR DOUBLE BETA DECAY SEARCHES -- Abstract -- 1.PotentialofDoubleBetaDecay -- 2.DetectionofDoubleBetaDecay -- 3.NewGenerationGermaniumExperiments -- 4.BackgroundReductionandSensitivity -- 4.1.Simulation -- 4.2.RejectionofBackground -- 4.2.1.Granularity -- 4.2.2.Segmentation -- 4.2.3.PSA -- 4.3.EfficiencyandSensitivity -- 4.3.1.EfficiencytoSignal -- 4.3.2.Sensitivity -- 5.Conclusion -- Acknowledgments -- References. 327 $aGROWTH OF Ge CRYSTALS WITH EXTREMELY LOW DISLOCATION DENSITY -- ABSTRACT -- I. INTRODUCTION -- II. DISLOCATION-FREE Ge CRYSTAL GROWTH BY THE NEW CZOCHRALSKI METHOD -- A. Difficulty in Growth of Dislocation-Free Ge Crystals -- B. Procedure of New CZ Growth -- C. Grown Ge Boules -- D. Electrical and Chemical Valuation of Grown Ge Crystals -- E. Evaluation of Grown Ge Crystals by Infrared Absorption -- F. Role of B2O3 Liquid in Growth of Ge Crystals -- III. OXYGEN-ENRICHED Ge CRYSTAL GROWTH BY THE NEW CZOCHRALSKI METHOD -- A. Oxygen in Ge -- B. Procedure of O-Enriched Ge Crystal Growth -- C. O-Enriched Ge Boules -- D. Evaluation of Oxygen Concentration in O-Enriched Ge Crystals by Infrared Absorption -- IV. SOLUBILITY AND SEGREGATION OF OXYGEN INTO Ge -- CONCLUSION -- ACKNOWLEDGMENTS -- REFERENCES -- INDEX. 330 $aGermanium is an important semiconductor material used in transistors and various other electronic devices. Its major end uses are fibre-optic systems and infrared optics, but it is also used for polymerisation catalysts, as well as in electronics and solar cell applications. This book presents current research in the study of germanium, including properties and generation by irradiation of germanium point defects in Ge-doped silica; Germanium encaged fullerene-synthesis; research of silicon and germanium structures with films of oxides and fluoride rare earth elements and new generation germanium detectors for double beta decay searches. 410 0$aChemical engineering methods and technology. 606 $aGermanium 615 0$aGermanium. 676 $a546/.684 701 $aGermanno$b Regina V$01871812 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910970280303321 996 $aGermanium$94480761 997 $aUNINA