LEADER 01145cam0 2200325 450 001 E600200047999 005 20211007101318.0 100 $a20090410d2008 |||||ita|0103 ba 101 $aita 102 $aIT 200 1 $aCodice penale e normativa complementare$fCarlo Enrico Paliero$gcon la collaborazione di Marco Scoletta$c; e Pietro Chiaraviglio 205 $a12.ed 210 $aMilano$cR. Cortina$d[2008] 215 $aXII, 1443 p.$d19 cm 225 2 $aCodici 300 $a(ac) 410 1$1001LAEC00026568$12001 $a*Codici 702 1$aScoletta, Marco$3A600200054179$4070 702 1$aChiaraviglio, Pietro$3A600200054180$4070 702 1$aPaliero, Carlo Enrico$3A600200045010$4070 710 02$a*Italia$3AF00024563$4070$0423419 801 0$aIT$bUNISOB$c20211007$gRICA 850 $aUNISOB 852 $aUNISOB$j340|Ita|Cod$m143033 912 $aE600200047999 940 $aM 102 Monografia moderna SBN 941 $aM 957 $a340|Ita|Cod$b000313$gSI$d143033$racquisto$1catenacci$2UNISOB$3UNISOB$420090410083118.0$520211007101318.0$6menle 996 $aCodice penale e normativa complementare$91683038 997 $aUNISOB LEADER 01474nam 22004813 450 001 9910671940803321 005 20220407084625.0 010 $a9786555153965 035 $a(CKB)4900000000570342 035 $a(MiAaPQ)EBC6825778 035 $a(Au-PeEL)EBL6825778 035 $a(OCoLC)1289367193 035 $a(EXLCZ)994900000000570342 100 $a20220407d2021 uy 0 101 0 $apor 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aCompliance $eEntre a Teoria e a Prática 210 1$aIndaiatuba :$cEditora Foco,$d2021. 210 4$d©2021. 215 $a1 online resource (542 pages) 311 $a9786555153958 517 $aCompliance entre a teoria e a prática 517 $aCompliance 700 $aSoares$b Adrienny Rúbia de Oliveira$01336121 701 $aSantos$b Alexandre Aguilar$01336122 701 $aMoura$b Aline Teodoro de$01336123 701 $aContinentino$b Ana$01336124 701 $aFrazão$b Ana$01336125 701 $aCarvalho$b Ana Luísa Macêdo$01336126 701 $aSilva$b Arthur Rodrigues da$01336127 701 $aSouza$b Artur de Brito Gueiros$01336128 701 $aNarciso$b Bárbara Simões$01336129 701 $aFranco$b Brenda Dutra$01336130 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910671940803321 996 $aCompliance$93051921 997 $aUNINA LEADER 04392oam 2200649I 450 001 9910970010403321 005 20240410023124.0 010 $a1-317-39674-X 010 $a0-429-22599-7 024 7 $a10.1201/b18441 035 $a(CKB)2670000000616285 035 $a(EBL)2050822 035 $a(SSID)ssj0001481819 035 $a(PQKBManifestationID)11857918 035 $a(PQKBTitleCode)TC0001481819 035 $a(PQKBWorkID)11502950 035 $a(PQKB)11726052 035 $a(MiAaPQ)EBC2050822 035 $a(OCoLC)908932213 035 $a(EXLCZ)992670000000616285 100 $a20180420d20152015 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aEnergy dissipation in hydraulic structures /$fHubert Chanson, School of Civil Engineering, University of Queensland, Brisbane, Australia 205 $a1st ed. 210 1$aBoca Raton :$cCRC Press,$d[2015]. 210 4$d©2015 215 $a1 online resource (178 p.) 225 0 $aBalkema Book 225 0 $aIAHR Monographs 300 $aDescription based upon print version of record. 311 08$a1-138-02755-3 311 08$a1-315-68029-7 320 $aIncludes bibliographical references at the end of each chapters. 327 $aFront Cover; About the IAHR Book Series; Table of contents; Preface; 1. Introduction: Energy dissipators in hydraulic structures; 2. Energy dissipation at block ramps; 3. Stepped spillways and cascades; 4. Hydraulic jumps and stilling basins; 5. Ski jumps, jets and plunge pools; 6. Impact dissipators; 7. Energy dissipation: Concluding remarks 330 $aRecent advances in technology have permitted the construction of large dams, reservoirs and channels. This progress has necessitated the development of new design and construction techniques, particularly with the provision of adequate flood release facilities. Chutes and spillways are designed to spill large water discharges over a hydraulic structure (e.g. dam, weir) without major damage to the structure itself and to its environment. At the hydraulic structure, the flood waters rush as an open channel flow or free-falling jet, and it is essential to dissipate a very signifi cant part of the flow kinetic energy to avoid damage to the hydraulic structure and its surroundings. Energy dissipation may be realised by a wide range of design techniques. A number of modern developments have demonstrated that such energy dissipation may be achieved (a) along the chute, (b) in a downstream energy dissipator, or (c) a combination of both. The magnitude of turbulent energy that must be dissipated in hydraulic structures is enormous even in small rural and urban structures. For a small storm waterway discharging at a 4 m3/s mm high drop, the turbulent kinetic energy flux per unit time is 120 kW! At a large dam, the rate of energy dissipation can exceed tens to hundreds of gigawatts; that is, many times the energy production rate of nuclear power plants. Many engineers have never been exposed to the complexity of energy dissipator designs, to the physical processes taking place and to the structural challenges. Several energy dissipators, spillways and storm waterways failed because of poor engineering design. It is believed that a major issue affecting these failures was the lack of understanding of the basic turbulent dissipation processes and of the interactions between free-surface aeration and flow turbulence. In that context, an authoritative reference 330 8 $abook on energy dissipation in hydraulic structures is proposed here. The book contents encompass a range of design techniques including block ramps, stepped spillways, hydraulic jump stilling basins, ski jumps and impact dissipators. 410 0$aIAHR Monographs 606 $aHydrodynamics 606 $aHydraulic structures 606 $aEnergy dissipation 606 $aDiversion structures (Hydraulic engineering) 615 0$aHydrodynamics. 615 0$aHydraulic structures. 615 0$aEnergy dissipation. 615 0$aDiversion structures (Hydraulic engineering) 676 $a628.10826634 700 $aChanson$b Hubert$0285131 801 0$bFlBoTFG 801 1$bFlBoTFG 906 $aBOOK 912 $a9910970010403321 996 $aEnergy dissipation in hydraulic structures$92876157 997 $aUNINA