LEADER 03841nam 2200553Ia 450 001 9910969394303321 005 20251116221148.0 010 $a1-60741-414-7 035 $a(CKB)2560000000069935 035 $a(EBL)3018517 035 $a(SSID)ssj0000418011 035 $a(PQKBManifestationID)11307160 035 $a(PQKBTitleCode)TC0000418011 035 $a(PQKBWorkID)10370404 035 $a(PQKB)11202965 035 $a(MiAaPQ)EBC3018517 035 $a(BIP)25773042 035 $a(EXLCZ)992560000000069935 100 $a20081124d2009 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aFoundations and applications of variational and perturbation methods /$fS. Raj Vatsya 205 $a1st ed. 210 $aHauppauge, NY $cNova Science Publishers$dc2009 215 $a1 online resource (349 p.) 300 $aDescription based upon print version of record. 311 08$a1-60692-591-1 320 $aIncludes bibliographical references (p. [327]-330) and index. 327 $aIntro -- FOUNDATIONS AND APPLICATIONS OFVARIATIONAL AND PERTURBATIONMETHODS -- FOUNDATIONS AND APPLICATIONS OFVARIATIONAL AND PERTURBATIONMETHODS -- CONTENTS -- PREFACE -- ACKNOWLEDGEMENTS -- I. FOUNDATIONS -- 1. INTEGRATION AND VECTOR SPACES -- 1. I. PRELIMINARIES -- 1. II. INTEGRATION -- 1.II.1. Basic Concepts -- 1.II.2. Integration over Trajectories -- 1. III. VECTOR SPACES -- 2. OPERATORS IN VECTOR SPACES -- 2.I. OPERATORS IN BANACH SPACES -- 2.II. Operators in Hilbert Spaces -- 2.III. Forms in Hilbert Spaces -- 2.IV. Integral Transforms -- 2.V. Differential Operators -- 3. VARIATIONAL METHODS -- 3.I. FORMULATION -- 3.II. CONVERGENCE -- 3.II.1. Basic Results -- 3.II.2. Compact Operators -- 3.II.3. Bounded Operators -- 3.II.4. Semi-Bounded Operators -- 3.III. PADÉ APPROXIMANTS -- 3.III.1. Formulation -- 3.III.2. Representations -- 3.III.3. Convergence And Applications -- 3.IV. MONOTONIC CONVERGENCE -- 3.IV.1. Diagonal Forms -- 3.IV.2. Eigenvalues -- 4. PERTURBATION METHODS -- 4.I. PERTURBED OPERATOR -- 4.II. SPECTRAL PERTURBATION -- 4.II.1. Resolvent and Point Spectrum -- 4.II.2. Continuous Spectrum -- 4.III. SPECTRAL DIFFERENTIATION -- 4.IV. ITERATION -- II. APPLICATIONS -- 5. MATRICES -- 5.I. TRIDIAGONAL MATRICES -- 5.II. STRUCTURED MATRICES -- 6. ATOMIC SYSTEMS -- 6.I. PRELIMINARIES -- 6.II. EIGENVALUES AND CRITICAL POINTS -- 6.II.1. Helium Atom -- 6.II.2. Short Range Potentials -- 6.III. SCATTERING -- 6.III.1. Formulation -- 6.III.2. Born Series -- 6.III.3. Schwinger's Method -- 6.III.4. Hulthén -Kohn Methods -- 6.III.5. Rotated Hamiltonians -- 7. SUPPLEMENTARY EXAMPLES -- 7.I. RAY TOMOGRAPHY -- 7.II. MAXWELL'S EQUATIONS -- 7.III. POSITIVITY LEMMA FOR THE ELLIPTIC OPERATORS -- 7.III.1. Basic Results -- 7.III.2. Applications -- 7.IV. TRANSPORT AND PROPAGATION -- 7.IV.1. Reaction-Diffusion -- 7.IV.2. Heat Transfer. 327 $a7.IV.3. Radiative Transfer -- 7.IV.4. Turbulent Diffusion -- 7.IV.5. Optical Beam Propagation -- 7.V. QUANTUM THEORY -- REFERENCES -- INDEX. 330 $aContents: Preface; Integration and vector spaces; Operators in vector spaces; Variational methods; Perturbation methods; Matrices; Atomic systems; Supplementary examples; References; Index. 606 $aPerturbation (Mathematics) 606 $aPerturbation (Quantum dynamics) 606 $aVariational principles 615 0$aPerturbation (Mathematics) 615 0$aPerturbation (Quantum dynamics) 615 0$aVariational principles. 676 $a515/.392 700 $aVatsya$b S. Raj$01869352 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910969394303321 996 $aFoundations and applications of variational and perturbation methods$94477503 997 $aUNINA