LEADER 05167nam 2200685Ia 450 001 9910969255003321 005 20251116181548.0 010 $a1-61122-889-1 035 $a(CKB)2550000001041161 035 $a(EBL)3018128 035 $a(SSID)ssj0000835112 035 $a(PQKBManifestationID)11412042 035 $a(PQKBTitleCode)TC0000835112 035 $a(PQKBWorkID)10989573 035 $a(PQKB)10941746 035 $a(MiAaPQ)EBC3018128 035 $a(Au-PeEL)EBL3018128 035 $a(CaPaEBR)ebr10659050 035 $a(OCoLC)832313999 035 $a(BIP)27518742 035 $a(EXLCZ)992550000001041161 100 $a20090820d2010 uy 0 101 0 $aeng 135 $aurcn||||||||| 181 $ctxt 182 $cc 183 $acr 200 00$aComputational mechanics research trends /$fHans P. Berger, editor 205 $a1st ed. 210 $aHauppauge, N.Y. $cNova Science Publishers$dc2010 215 $a1 online resource (608 p.) 225 0 $aComputer science, technology and applications 300 $aDescription based upon print version of record. 311 08$a1-60876-057-X 320 $aIncludes bibliographical references and index. 327 $a""COMPUTATIONAL MECHANICS""; ""COMPUTATIONAL MECHANICS""; ""CONTENTS ""; ""PREFACE ""; ""A NATURAL NEIGHBOUR METHOD BASEDON FRAEIJS DE VEUBEKE VARIATIONAL PRINCIPLE""; ""Abstract""; ""Introduction""; ""Virtual Work Principle""; ""Approximation of the Displacement Field""; ""Discretized Virtual Work Principle""; ""Linear Elastic Theory""; ""The Fraeijs de Veubeke Functional""; ""The Fraeijs de Veubeke Variational Principle""; ""Domain Decomposition and Discretization""; ""Equations Deduced from the Fraeijs de Veubeke Variational Principle""; ""Matrix Notation""; ""Numerical Integration"" 327 $a""Patch Tests""""Application to Pure Bending""; ""Application to a Square Membrane with a Circular Hole""; ""Extention to non Linear Materials""; ""Variational Equation""; ""Domain Decomposition and Discretization""; ""Matrix Notation""; ""Solution of the Matrix Equations""; ""Elasto-plastic Material with von Mises Linear Hardening""; ""Patch Tests""; ""Pure Bending of a Beam""; ""Square Membrane with a Circular Hole""; ""Extention to Linear Fracture Mechanics""; ""Introduction""; ""Domain Decomposition and Discretization""; ""Solution of the Equation System""; ""Patch Tests"" 327 $a""Translation Tests""""Mode 1 Tests""; ""Mode 2 Tests""; ""Bar with a Single Edge Crack""; ""Conclusions""; ""Annex 1: Construction of the Voronoi Cells""; ""Case of a Convex Domain""; ""Case of a non Convex Domain""; ""Annex.2: Laplace Interpolant""; ""Case of a Point X Inside the Domain""; ""Case of a Point X on the Domain Contour""; ""Annex 3. Particular Case of a Regular Grid of Nodes""; ""Laplace Interpolant""; ""Case 1: X between A and B""; ""Case 2: X between B and C""; ""Case 3: X between C and D""; ""Annex 4. Introduction of the Hypotheses in the FdV Principle"" 327 $a""Annex 5. Analytical Calculation of []V and[]""""References""; ""NUMERICAL AND THEORETICAL INVESTIGATIONS OF THE TENSILE FAILURE OF SHRUNK CEMENT-BASED COMPOSITES""; ""Abstract""; ""1. Introduction""; ""1.1. Characteristics of Shrunk Concrete""; ""1.2. Algorithm to Produce a Shrunk Specimen""; ""1.3. Lattice-Type Modeling of Concrete""; ""1.4. Paper Structure""; ""2. GB Lattice Model""; ""3. Method to Simulate Mismatch Deformation Due to Matrix Uniform Shrinkage""; ""4. Global Numerical Procedure""; ""4.1. Mohr-Coulomb Criterion""; ""4.2. Event-By-Event Algorithm"" 327 $a""5. Theoretical Analyses of Influences of Pre-stressed Field""""6. Numerical Examples and Discussions""; ""6.1. Production of Shrunk Specimens""; ""6.2. Tensile Examples on Specimens without the Shrinkage-Induced Stress:Case 1 and Case 2""; ""6.3. Analysis of a Typical Case for Shrunk Specimens: Case 3""; ""6.4. Influence of the Shrinkage Rate: Case 3-5""; ""7. Conclusions""; ""Acknowledgments""; ""References""; ""RECENT ADVANCES IN THE STATIC ANALYSIS OF STIFFENED PLATES APPLICATION TO CONCRETE OR TO COMPOSITE STEEL-CONCRETE STRUCTURES""; ""Abstract""; ""Introduction"" 327 $a""Statement of the Problem"" 330 $aComputational mechanics is the discipline concerned with the use of computational methods to study phenomena governed by the principles of mechanics. This book gathers the latest research from around the globe in this dynamic field. 410 0$aComputer Science, Technology and Applications 606 $aMaterials$xMathematical models 606 $aMaterials$xComputer simulation 606 $aMechanical engineering$xMathematics 606 $aMechanics, Analytic 615 0$aMaterials$xMathematical models. 615 0$aMaterials$xComputer simulation. 615 0$aMechanical engineering$xMathematics. 615 0$aMechanics, Analytic. 676 $a621.01/51 701 $aBerger$b Hans P$01862737 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910969255003321 996 $aComputational mechanics research trends$94469018 997 $aUNINA