LEADER 05620nam 2200637Ia 450 001 9910967813003321 005 20251117065758.0 010 $a9781611222609 010 $a1611222605 035 $a(CKB)2670000000089931 035 $a(EBL)3018820 035 $a(SSID)ssj0000473627 035 $a(PQKBManifestationID)12212356 035 $a(PQKBTitleCode)TC0000473627 035 $a(PQKBWorkID)10448996 035 $a(PQKB)11280728 035 $a(MiAaPQ)EBC3018820 035 $a(Au-PeEL)EBL3018820 035 $a(CaPaEBR)ebr10661759 035 $a(OCoLC)923659204 035 $a(BIP)43287889 035 $a(BIP)32187359 035 $a(EXLCZ)992670000000089931 100 $a20100824d2011 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aSynchronization in complex networks /$fXin Biao Lu and Bu Zhi Qin 205 $a1st ed. 210 $aNew York $cNova Science Publisher's$dc2011 215 $a1 online resource (147 p.) 225 0 $aComputer networks. 300 $aDescription based upon print version of record. 311 08$a9781617618734 311 08$a161761873X 320 $aIncludes bibliographical references (p. [123]-133) and index. 327 $aIntro -- SYNCHRONIZATION IN COMPLEX NETWORKS -- SYNCHRONIZATION IN COMPLEX NETWORKS -- CONTENTS -- PREFACE -- Chapter 1 SUMMARIZATION OF SYNCHRONIZATION IN COMPLEX NETWORK -- Abstract -- 1.1. Introduction -- 1.2. Basic Concept of Network -- 1.2.1. The Graph Description of Network -- 1.2.2. The Average Path Length -- 1.2.3. Clustering Coefficient -- 1.2.4. Betweenness -- 1.2.5. Assortative Coefficient -- 1.3. Complete Synchronization in Complex Network -- 1.3.1. Master Stability Function -- 1.3.2. Synchronization of Un-weighted Networks -- 1.3.3. Synchronization of Weighted Networks -- 1.3.3.1. Adjust Node Degree -- 1.3.3.2. Adjust Coupling Direction and Edge Information -- 1.3.3.3. Optimal Synchronization of Weighted Networks -- 1.3.3.4. Transition from Non-synchronization to Synchronization -- Chapter 2 ADAPTIVE SYNCHRONIZATION OF COMPLEX NETWORKS -- Abstract -- 2.1. Introduction -- 2.2. Adaptive Synchronization with Unknown Network Topologies -- 2.2. Local Synchronization -- 2.2.2. Global Synchronization -- 2.3 Adaptive Synchronization with Known Network Topologies -- 2.3.1. Global Information -- 2.3.2. Local Information -- 2.3.2. Vertex-based Strategy -- 2.3.2.2. Edge-based Strategy -- Chapter 3 CLUSTER SYNCHRONIZATION IN COMPLEX NETWORKS -- Abstract -- 3.1. Introduction -- 3.2. Select Appreciate Coupling Matrix -- 3.3. Add Simple Controllers -- 3.3.1. Local Stability Analysis -- 3.3.2. Global Stability Analysis -- 3.3.3. Simulation Results -- 3.4. Adaptive Cluster Synchronization of Complex Networks -- 3.4.1. Adaptive Strategy in Cluster Synchronization -- 3.4.2. Global Stability Analysis of Cluster Synchronization -- 3.4.3. Simulation Results -- 3.4.3.1. BA Scale-free Network without Noise -- 3.4.3.2. BA Scale-free Network with Noise -- 3.4.3. Nonidentical Oscillators -- Chapter 4 CONTROL OF COMPLEX DYNAMICAL NETWORKS. 327 $aAbstract -- 4.1. Introduction -- 4.2. Control a General Dynamical Network to a Homogeneous Equilibrium Point -- 4.3. Control a General Dynamical Network to Synchronization State -- 4.4. Controllability of Pinning Control -- 4.5. Control a Network to a Heterogeneous Equilibrium Point -- 4.5.1. Open-loop Constant Control -- 4.5.2. Feedback Pinning Control -- 4.5.2.1. Local Stability Analysis -- 4.5.2.2. Global Stability Analysis -- 4.5.2.3. Simulation Results -- Chapter 5 SYNCHRONIZATION OF TIME VARYING COMPLEX NETWORKS -- Abstract -- 5.1. Introduction -- 5.2. Local Synchronization of Time Varying Complex Networks -- 5.3. Connection Graph Stability Method -- 5.3.1. Stability Analysis of Global Synchronization -- 5.3.2. Application of Connection Graph Stability Method -- 5.3.2.1. Average Model -- 5.3.2.2. Blinking Small World Network -- 5.4. Fast Switching Synchronization of Time Varying Complex Networks -- 5.4.1. Local Synchronization of Complex Networks -- 5.4.2. Global Synchronization of Directed Networks -- 5.4.2.1. Fixed Topology -- 5.4.2.2. Switching Topologies -- 5.4.4.3. Simulation Results -- ACKNOWLEDGMENTS -- REFERENCES -- INDEX -- Blank Page. 330 $aThis book discusses the synchronization in complex networks. At first, the basic concepts of complex networks, including the description of the network, the degree of the node, clustering coefficient, and the average path length are introduced. When the initial states of nodes are near enough to synchronization manifold, the master stability function method is applied to analyze its local stability. However, when the initial states of nodes are randomly distributed, the Lyapunov function method is used to analyze the global stability of synchronization manifold. Furthermore, the connection graph stability method is used to investigate the global stability of synchronization in complex networks with time-varying network topology. 410 0$aComputer Networks 606 $aSynchronous data transmission systems 606 $aComputer network architectures 615 0$aSynchronous data transmission systems. 615 0$aComputer network architectures. 676 $a004.6/5 700 $aLu$b Xin Biao$01866355 701 $aQin$b Bu Zhi$01866356 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910967813003321 996 $aSynchronization in complex networks$94473747 997 $aUNINA