LEADER 03292nam 2200661Ia 450 001 9910967545403321 005 20251116203314.0 010 $a1-281-11791-9 010 $a9786611117917 010 $a0-8176-4646-9 024 7 $a10.1007/978-0-8176-4646-2 035 $a(CKB)1000000000408241 035 $a(EBL)336962 035 $a(OCoLC)242246047 035 $a(SSID)ssj0000236164 035 $a(PQKBManifestationID)11216521 035 $a(PQKBTitleCode)TC0000236164 035 $a(PQKBWorkID)10165663 035 $a(PQKB)10157206 035 $a(DE-He213)978-0-8176-4646-2 035 $a(MiAaPQ)EBC336962 035 $a(Au-PeEL)EBL336962 035 $a(CaPaEBR)ebr10210826 035 $a(CaONFJC)MIL111791 035 $a(PPN)12373424X 035 $a(EXLCZ)991000000000408241 100 $a20061205d2007 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aRepresentation theory and automorphic forms /$fedited by Toshiyuki Kobayashi, Wilfried Schmid and Jae-Hyun Yang 205 $a1st ed. 2008. 210 $aBoston, Mass. ;$aLondon $cBirkha user $cSpringer [distributor]$d2007 215 $a1 online resource (222 p.) 225 1 $aProgress in Mathematics,$x0743-1643 ;$v255 300 $aDescription based upon print version of record. 311 08$a0-8176-4505-5 320 $aIncludes bibliographical references. 327 $aIrreducibility and Cuspidality -- On Liftings of Holomorphic Modular Forms -- Multiplicity-free Theorems of the Restrictions of Unitary Highest Weight Modules with respect to Reductive Symmetric Pairs -- The Rankin?Selberg Method for Automorphic Distributions -- Langlands Functoriality Conjecture and Number Theory -- Discriminant of Certain K3 Surfaces. 330 $aThis volume addresses the interplay between representation theory and automorphic forms. The invited papers, written by leading mathematicians, track recent progress in the ever expanding fields of representation theory and automorphic forms, and their association with number theory and differential geometry. Representation theory relates to number theory through the Langlands program, which conjecturally connects algebraic extensions of number fields to automorphic representations and L-functions. These are the subject of several of the papers. Multiplicity-free representations constitute another subject, which is approached geometrically via the notion of visible group actions on complex manifolds. Both graduate students and researchers will find inspiration in this volume. Contributors: T. Ikeda, T. Kobayashi, S. Miller, D. Ramakrishnan, W. Schmid, F. Shahidi, K. Yoshikawa. 410 0$aProgress in Mathematics,$x0743-1643 ;$v255 606 $aAutomorphic forms 606 $aRepresentations of groups 615 0$aAutomorphic forms. 615 0$aRepresentations of groups. 676 $a515.9 701 $aKobayashi$b Toshiyuki$f1962-$01103943 701 $aSchmid$b Wilfried$f1943-$0736464 701 $aYang$b Chae-hyo?n$01891018 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910967545403321 996 $aRepresentation theory and automorphic forms$94533505 997 $aUNINA