LEADER 03582nam 2200697 a 450 001 9910967457203321 005 20251117074554.0 010 $a9786612758362 010 $a9781282758360 010 $a1282758365 010 $a9789814277723 010 $a981427772X 035 $a(CKB)2490000000001643 035 $a(StDuBDS)AH24686380 035 $a(SSID)ssj0000443563 035 $a(PQKBManifestationID)12147422 035 $a(PQKBTitleCode)TC0000443563 035 $a(PQKBWorkID)10456037 035 $a(PQKB)10056871 035 $a(MiAaPQ)EBC1679789 035 $a(WSP)00000571 035 $a(Au-PeEL)EBL1679789 035 $a(CaPaEBR)ebr10422249 035 $a(CaONFJC)MIL275836 035 $a(OCoLC)729020141 035 $a(Perlego)848677 035 $a(EXLCZ)992490000000001643 100 $a20100504d2009 uy 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aTrends in differential geometry, complex analysis and mathematical physics $eproceedings of the 9th International Workshop on Complex Structures, Integrability and Vector Fields, Sofia, Bulgaria, 25-29 August 2008 /$feditors, Kouei Sekigawa, Vladimir S. Gerdjikov, Stancho Dimiev 205 $a1st ed. 210 $aHackensack, N.J. $cWorld Scientific$dc2009 215 $a1 online resource (300 p.) 300 $aConference proceedings. 311 08$a9789814277716 311 08$a9814277711 320 $aIncludes bibliographical references and index. 327 $aA Discrete Model for Kaehler Magnetic Fields on a Complex Hyperbolic Space; A Characterization of Clifford Minimal Hypersurfaces of a Sphere in Terms of Their Geodesics; Hyperbolic Gauss Maps and Parallel Surfaces in Hyperbolic Three-Space; Generalizations of Conjugate Connections; Heisenberg Relations in the General Case; A Short Note on the Double-Complex Laplace Operator; Monogenic, Hypermonogenic and Holomorphic; Cliffordian Functions - A Survey; On Multicomponent Evolution Equations on Symmetric Spaces with Constant Boundary Conditions; Relativistic Strain and Electromagnetic Photon-Like Objects; Cyclic Hyper-Scalar Systems; Poisson Structures of Equations Associated with Groups of Diffeomorphisms; On the Lax Pair for Two and Three Wave Interaction System; New Integrable Equations of MKdV Type; Persistence of Solutions for Some Integrable Shallow Water Equations; Mathematical Outlook of Fractals and Chaos Related to Simple Orthorhombic Ising-Onsager-Zhang Lattices. 330 8 $aThis text contains the contributions by the participants in the nine series of workshops. Throughout the series of workshops, the contributors are consistently aiming at higher achievements of studies of the current topics in complex analysis, differential geometry, mathematical physics, and more. 606 $aFunctional analysis$vCongresses 606 $aGeometry, Differential$vCongresses 606 $aMathematical physics$vCongresses 615 0$aFunctional analysis 615 0$aGeometry, Differential 615 0$aMathematical physics 676 $a515.7 701 $aSekigawa$b Kouei$0858639 701 $aGerdjikov$b V. S$g(Vladimir Stefanov)$0602015 701 $aDimiev$b Stancho$0858640 712 12$aInternational Workshop on Complex Structures and Vector Fields. 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910967457203321 996 $aTrends in differential geometry, complex analysis and mathematical physics$94476507 997 $aUNINA