LEADER 01697nam 2200385Ia 450 001 996397125703316 005 20200824132314.0 035 $a(CKB)4940000000061188 035 $a(EEBO)2240940966 035 $a(OCoLC)ocm24164575e 035 $a(OCoLC)24164575 035 $a(EXLCZ)994940000000061188 100 $a19910801d1593 uy | 101 0 $aeng 135 $aurbn||||a|bb| 200 14$aThe enimie of securitie, or, A daily exercise of godlie meditations$b[electronic resource] $edrawne out of the pure fountains of the Holie Scriptures, and published for the profit of all persons of anie state or calling, in the German and Latine toongs /$fby the right reuerend M. Iohn Auenar, publike professor of the Hebrue toong in the famous Vniuersitie of Witeberge ; in English by Thomas Rogers .. 210 $aAt London $c[Pr]inted by R. Yardley and P. Short on Bredstreet hil, at the signe of the Starre$d1593 215 $a[46], 346, [12] p 300 $aSignatures: A¹²(-A1) B-R¹² (last leaf blank). 300 $aFirst part of title proper in ornamental border. 300 $aNumerous errors in paging. 300 $aImperfect: tightly bound; t.p. cropped. 300 $aReproduction of original in the Harvard University Library. 330 $aeebo-0062 606 $aLutheran Church$vPrayer-books and devotions 615 0$aLutheran Church 700 $aHabermann$b Johann$f1516-1590.$0879670 701 $aRogers$b Thomas$fd. 1616.$01001286 801 0$bEBL 801 1$bEBL 801 2$bWaOLN 906 $aBOOK 912 $a996397125703316 996 $aThe enimie of securitie, or, A daily exercise of godlie meditations$92310419 997 $aUNISA LEADER 02209oam 2200577 450 001 9910713754703321 005 20200731082246.0 035 $a(CKB)5470000002504136 035 $a(OCoLC)1104148296 035 $a(EXLCZ)995470000002504136 100 $a20190610d1951 ua 0 101 0 $aeng 135 $aurbn||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aAir forces and moments on triangular and related wings with subsonic leading edges oscillating in supersonic potential flow /$fby Charles E. Watkins 210 1$aWashington, [D.C.] :$cNational Advisory Committee for Aeronautics,$d1951. 215 $a1 online resource (44 pages) $cillustrations 225 1 $aTechnical notes / National Advisory Committee for Aeronautics ;$vNo. 2457 300 $a"September 1951." 300 $aNo Federal Depository Library Program (FDLP) item number. 320 $aIncludes bibliographical references (page 34). 606 $aAirplanes$xWings, Swept-back 606 $aAirplanes$xWings, Triangular 606 $aLeading edges (Aerodynamics) 606 $aOscillating wings (Aerodynamics) 606 $aAirplanes$xWings, Swept-back$2fast 606 $aAirplanes$xWings, Triangular$2fast 606 $aLeading edges (Aerodynamics)$2fast 606 $aOscillating wings (Aerodynamics)$2fast 615 0$aAirplanes$xWings, Swept-back. 615 0$aAirplanes$xWings, Triangular. 615 0$aLeading edges (Aerodynamics) 615 0$aOscillating wings (Aerodynamics) 615 7$aAirplanes$xWings, Swept-back. 615 7$aAirplanes$xWings, Triangular. 615 7$aLeading edges (Aerodynamics) 615 7$aOscillating wings (Aerodynamics) 700 $aWatkins$b Charles E.$0303474 712 02$aUnited States.$bNational Advisory Committee for Aeronautics, 801 0$bTRAAL 801 1$bTRAAL 801 2$bOCLCO 801 2$bTRAAL 801 2$bOCLCF 801 2$bGPO 906 $aBOOK 912 $a9910713754703321 996 $aAir forces and moments on triangular and related wings with subsonic leading edges oscillating in supersonic potential flow$93462045 997 $aUNINA LEADER 06458nam 22006973 450 001 9910966324603321 005 20231110213201.0 010 $a9781470470920 010 $a1470470926 035 $a(CKB)5600000000455451 035 $a(MiAaPQ)EBC29731903 035 $a(Au-PeEL)EBL29731903 035 $a(OCoLC)1343250800 035 $a(EXLCZ)995600000000455451 100 $a20220905d2022 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aLocal Lp-Brunn-Minkowski inequalities for p < 1 /$fAlexander V. Kolesnikov, Emanuel Milman 205 $a1st ed. 210 1$aProvidence :$cAmerican Mathematical Society,$d2022. 210 4$d©2022. 215 $a1 online resource (90 pages) 225 1 $aMemoirs of the American Mathematical Society ;$vv.277 311 08$a9781470451608 311 08$a1470451603 327 $aCover -- Title page -- Chapter 1. Introduction -- 1.1. Previously Known Partial Results -- 1.2. Main Results -- 1.3. Spectral Interpretation via the Hilbert-Brunn-Minkowski operator -- 1.4. Method of Proof -- 1.5. Applications -- Chapter 2. Notation -- Chapter 3. Global vs. Local Formulations of the ^{ }-Brunn-Minkowski Conjecture -- 3.1. Standard Equivalent Global Formulations -- 3.2. Global vs. Local ^{ }-Brunn-Minkowski -- Chapter 4. Local ^{ }-Brunn-Minkowski Conjecture -Infinitesimal Formulation -- 4.1. Mixed Surface Area and Volume of ² functions -- 4.2. Properties of Mixed Surface Area and Volume -- 4.3. Second ^{ }-Minkowski Inequality -- 4.4. Comparison with classical =1 case -- 4.5. Infinitesimal Formulation On ??¹ -- 4.6. Infinitesimal Formulation On ? -- Chapter 5. Relation to Hilbert-Brunn-Minkowski Operator and Linear Equivariance -- 5.1. Hilbert-Brunn-Minkowski operator -- 5.2. Linear equivariance of the Hilbert-Brunn-Minkowski operator -- 5.3. Spectral Minimization Problem and Potential Extremizers -- Chapter 6. Obtaining Estimates via the Reilly Formula -- 6.1. A sufficient condition for confirming the local -BM inequality -- 6.2. General Estimate on \D( ) -- 6.3. Examples -- Chapter 7. The second Steklov operator and \B( ??) -- 7.1. Second Steklov operator -- 7.2. Computing \B( ??) -- Chapter 8. Unconditional Convex Bodies and the Cube -- 8.1. Unconditional Convex Bodies -- 8.2. The Cube -- Chapter 9. Local log-Brunn-Minkowski via the Reilly Formula -- 9.1. Sufficient condition for verifying local log-Brunn-Minkowski -- 9.2. An alternative derivation via estimating \B( ) -- Chapter 10. Continuity of \B, \BNH, \D with application to _{ }? -- 10.1. Continuity of \B, \BNH, \D in -topology -- 10.2. The Cube -- 10.3. Unit-balls of ?_{ }? -- Chapter 11. Local Uniqueness for Even ^{ }-Minkowski Problem. 327 $aChapter 12. Stability Estimates for Brunn-Minkowski and Isoperimetric Inequalities -- 12.1. New stability estimates for origin-symmetric convex bodies with respect to variance -- 12.2. Improved stability estimates for all convex bodies with respect to asymmetry -- Bibliography -- Back Cover. 330 $a"The Lp-Brunn-Minkowski theory for p<1, proposed by Firey and developed by Lutwak in the 90's, replaces the Minkowski addition of convex sets by its Lp counterpart, in which the support functions are added in Lp-norm. Recently, Boroczky, Lutwak, Yang and Zhang have proposed to extend this theory further to encompass the range. In particular, they conjectured an Lp-Brunn-Minkowski inequality for origin-symmetric convex bodies in that range, which constitutes a strengthening of the classical Brunn-Minkowski inequality. Our main result confirms this conjecture locally for all (smooth) origin-symmetric convex bodies in Rn and. In addition, we confirm the local log-Brunn-Minkowski conjecture (the case ) for small-enough C2-perturbations of the unit-ball of for q 2, when the dimension n is sufficiently large, as well as for the cube, which we show is the conjectural extremal case. For unit-balls of with q, we confirm an analogous result for , a universal constant. It turns out that the local version of these conjectures is equivalent to a minimization problem for a spectral-gap parameter associated with a certain differential operator, introduced by Hilbert (under different normalization) in his proof of the Brunn- Minkowski inequality. As applications, we obtain local uniqueness results in the even Lp-Minkowski problem, as well as improved stability estimates in the Brunn- Minkowski and anisotropic isoperimetric inequalities"--$cProvided by publisher. 410 0$aMemoirs of the American Mathematical Society 517 3 $aLocal 606 $aConvex domains 606 $aLp spaces 606 $aMinkowski geometry 606 $aInequalities (Mathematics) 606 $aConvex and discrete geometry -- General convexity -- Inequalities and extremum problems$2msc 606 $aConvex and discrete geometry -- General convexity -- Asymptotic theory of convex bodies$2msc 606 $aPartial differential equations -- Spectral theory and eigenvalue problems -- Estimation of eigenvalues, upper and lower bounds$2msc 606 $aGlobal analysis, analysis on manifolds -- Partial differential equations on manifolds; differential operators -- Spectral problems; spectral geometry; scattering theory$2msc 615 0$aConvex domains. 615 0$aLp spaces. 615 0$aMinkowski geometry. 615 0$aInequalities (Mathematics) 615 7$aConvex and discrete geometry -- General convexity -- Inequalities and extremum problems. 615 7$aConvex and discrete geometry -- General convexity -- Asymptotic theory of convex bodies. 615 7$aPartial differential equations -- Spectral theory and eigenvalue problems -- Estimation of eigenvalues, upper and lower bounds. 615 7$aGlobal analysis, analysis on manifolds -- Partial differential equations on manifolds; differential operators -- Spectral problems; spectral geometry; scattering theory. 676 $a516/.08 676 $a516.08 686 $a52A40$a52A23$a35P15$a58J50$2msc 700 $aKolesnikov$b Alexander V$01800464 701 $aMilman$b Emanuel$0739651 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910966324603321 996 $aLocal Lp-Brunn-Minkowski inequalities for p$94345288 997 $aUNINA