LEADER 01124nam0-2200301---450- 001 990009419140403321 005 20110908145824.0 035 $a000941914 035 $aFED01000941914 035 $a(Aleph)000941914FED01 035 $a000941914 100 $a20110908d1962----km-y0itay50------ba 101 0 $ager 102 $aDE 105 $ay-------001yy 200 1 $aGrundlagen für die Zucht und Haltung der wichtigsten Versuchstiere$eKaninchen, Meerschweinchen, Ratte, Maus, Goldhamster, Hund, Katze, Frettchen, Schaf, Huhn, Kröte, Frosch$eMit kurzer Anatomie der Brust und Bauchorgane von Kaninchen, Meerschweinchen, Ratte, Maus, Goldhamster$fvon Siegfried Jung 210 $aStuttgart$cFischer$d1962 215 $aX, 495 p.$cill$d25 cm 610 0 $aAnimali da laboratorio$aAllevamento 676 $a616.027$v11 rid.$zita 700 1$aJung,$bSiegfried$0512438 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990009419140403321 952 $aIIIb C 36$bs.i.$fDMVSF 959 $aDMVSF 996 $aGrundlagen für die Zucht und Haltung der wichtigsten Versuchstiere$9758762 997 $aUNINA LEADER 04132nam 22006135 450 001 9910965757803321 005 20250725083319.0 010 $a1-4612-4190-1 024 7 $a10.1007/978-1-4612-4190-4 035 $a(CKB)3400000000090740 035 $a(SSID)ssj0001296104 035 $a(PQKBManifestationID)11735163 035 $a(PQKBTitleCode)TC0001296104 035 $a(PQKBWorkID)11347219 035 $a(PQKB)10740121 035 $a(DE-He213)978-1-4612-4190-4 035 $a(MiAaPQ)EBC3076179 035 $a(PPN)23803965X 035 $a(EXLCZ)993400000000090740 100 $a20121227d1995 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aClassical Descriptive Set Theory /$fby Alexander Kechris 205 $a1st ed. 1995. 210 1$aNew York, NY :$cSpringer New York :$cImprint: Springer,$d1995. 215 $a1 online resource (XVIII, 404 p.) 225 1 $aGraduate Texts in Mathematics,$x2197-5612 ;$v156 300 $a"With 34 illustrations." 311 08$a0-387-94374-9 311 08$a1-4612-8692-1 320 $aIncludes bibliographical references and index. 327 $aI Polish Spaces -- 1. Topological and Metric Spaces -- 2. Trees -- 3. Polish Spaces -- 4. Compact Metrizable Spaces -- 5. Locally Compact Spaces -- 6. Perfect Polish Spaces -- 7.Zero-dimensional Spaces -- 8. Baire Category -- 9. Polish Groups -- II Borel Sets -- 10. Measurable Spaces and Functions -- 11. Borel Sets and Functions -- 12. Standard Borel Spaces -- 13. Borel Sets as Clopen Sets -- 14. Analytic Sets and the Separation Theorem -- 15. Borel Injections and Isomorphisms -- 16. Borel Sets and Baire Category -- 17. Borel Sets and Measures -- 18. Uniformization Theorems -- 19. Partition Theorems -- 20. Borel Determinacy -- 21. Games People Play -- 22. The Borel Hierarchy -- 23. Some Examples -- 24. The Baire Hierarchy -- III Analytic Sets -- 25. Representations of Analytic Sets -- 26. Universal and Complete Sets -- 27. Examples -- 28. Separation Theorems -- 29. Regularity Properties -- 30. Capacities -- 31. Analytic Well-founded Relations -- IV Co-Analytic Sets -- 32. Review -- 33. Examples -- 34. Co-Analytic Ranks -- 35. Rank Theory -- 36. Scales and Uniformiiatiou -- V Projective Sets -- 37. The Projective Hierarchy -- 38. Projective Determinacy -- 39. The Periodicity Theorems -- 40. Epilogue -- Appendix A. Ordinals and Cardinals -- Appendix B. Well-founded Relations -- Appendix C. On Logical Notation -- Notes and Hints -- References -- Symbols and Abbreviations. 330 $aDescriptive set theory has been one of the main areas of research in set theory for almost a century. This text attempts to present a largely balanced approach, which combines many elements of the different traditions of the subject. It includes a wide variety of examples, exercises (over 400), and applications, in order to illustrate the general concepts and results of the theory. This text provides a first basic course in classical descriptive set theory and covers material with which mathematicians interested in the subject for its own sake or those that wish to use it in their field should be familiar. Over the years, researchers in diverse areas of mathematics, such as logic and set theory, analysis, topology, probability theory, etc., have brought to the subject of descriptive set theory their own intuitions, concepts, terminology and notation. 410 0$aGraduate Texts in Mathematics,$x2197-5612 ;$v156 606 $aLogic, Symbolic and mathematical 606 $aTopology 606 $aMathematical Logic and Foundations 606 $aTopology 615 0$aLogic, Symbolic and mathematical. 615 0$aTopology. 615 14$aMathematical Logic and Foundations. 615 24$aTopology. 676 $a511.3 700 $aKechris$b A. S.$f1946-$4aut$4http://id.loc.gov/vocabulary/relators/aut$060944 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910965757803321 996 $aClassical descriptive set theory$9375578 997 $aUNINA