LEADER 00737nam0-2200241 --450 001 9910986993103321 005 20250327112921.0 100 $a20250324d1959----kmuy0itay5050 ba 101 0 $aeng 102 $aGB 105 $a 001yy 200 1 $a<< The >>structure of stichomythia in Attic tragedy$fby sir John Myres 210 $aLondon$cG. Cumberlege$c[1949?] 215 $aP. 3-33$d25 cm 300 $aEstratto da: From the Proceedings of the British Academy, vol. 35 700 1$aMyres,$bJohn$01796637 801 0$aIT$bUNINA$gREICAT$2UNIMARC 901 $aLG 912 $a9910986993103321 952 $aOPUSC. 47 (026)$fFLFBC 959 $aFLFBC 996 $aStructure of stichomythia in Attic tragedy$94338485 997 $aUNINA LEADER 03258nam 22006133 450 001 9910964406903321 005 20231110230432.0 010 $a9781470472801 010 $a1470472805 035 $a(MiAaPQ)EBC30222569 035 $a(Au-PeEL)EBL30222569 035 $a(CKB)25289764400041 035 $a(OCoLC)1350688349 035 $a(EXLCZ)9925289764400041 100 $a20221110d2022 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aAdiabatic Evolution and Shape Resonances 205 $a1st ed. 210 1$aProvidence :$cAmerican Mathematical Society,$d2022. 210 4$d©2022. 215 $a1 online resource (102 pages) 225 1 $aMemoirs of the American Mathematical Society ;$vv.280 311 08$aPrint version: Hitrik, Michael Adiabatic Evolution and Shape Resonances Providence : American Mathematical Society,c2022 9781470454210 330 $a"Motivated by a problem of one mode approximation for a non-linear evolution with charge accumulation in potential wells, we consider a general linear adiabatic evolution problem for a semi-classical Schrodinger operator with a time dependent potential with a well in an island. In particular, we show that we can choose the adiabatic parameter with ln , where h denotes the semi-classical parameter, and get adiabatic approximations of exact solutions over a time interval of length N with an error O(). Here N 0 is arbitrary"--$cProvided by publisher. 410 0$aMemoirs of the American Mathematical Society 606 $aMathematical physics 606 $aAdiabatic invariants 606 $aPartial differential equations -- Qualitative properties of solutions -- Resonances$2msc 606 $aPartial differential equations -- Elliptic equations and systems -- Schro?dinger operator$2msc 606 $aPartial differential equations -- Spectral theory and eigenvalue problems -- Asymptotic distribution of eigenvalues and eigenfunctions$2msc 606 $aPartial differential equations -- Pseudodifferential operators and other generalizations of partial differential operators -- Pseudodifferential operators$2msc 615 0$aMathematical physics. 615 0$aAdiabatic invariants. 615 7$aPartial differential equations -- Qualitative properties of solutions -- Resonances. 615 7$aPartial differential equations -- Elliptic equations and systems -- Schro?dinger operator. 615 7$aPartial differential equations -- Spectral theory and eigenvalue problems -- Asymptotic distribution of eigenvalues and eigenfunctions. 615 7$aPartial differential equations -- Pseudodifferential operators and other generalizations of partial differential operators -- Pseudodifferential operators. 676 $a515/.7242 676 $a515.7242 686 $a35B34$a35J10$a35P20$a35S05$2msc 700 $aHitrik$b Michael$01802077 701 $aMantile$b Andrea$01802078 701 $aSjöstrand$b Johannes$0351203 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910964406903321 996 $aAdiabatic Evolution and Shape Resonances$94347611 997 $aUNINA