LEADER 03114nam 2200589Ia 450 001 9910964239103321 005 20200520144314.0 010 $a0-88385-933-5 035 $a(CKB)2670000000205150 035 $a(EBL)3330421 035 $a(SSID)ssj0000577613 035 $a(PQKBManifestationID)11399460 035 $a(PQKBTitleCode)TC0000577613 035 $a(PQKBWorkID)10577925 035 $a(PQKB)11192045 035 $a(UkCbUP)CR9780883859339 035 $a(Au-PeEL)EBL3330421 035 $a(CaPaEBR)ebr10729392 035 $a(OCoLC)929120340 035 $a(RPAM)2642256 035 $a(MiAaPQ)EBC3330421 035 $a(EXLCZ)992670000000205150 100 $a20111102d1966 uy 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aFirst concepts of topology $ethe geometry of mappings of segments, curves, circles and disks /$fby William G. Chinn and N.E. Steenrod 205 $a1st ed. 210 $aWashington, D.C. $cMathematical Association of America$d1966 215 $a1 online resource (viii, 160 pages) $cdigital, PDF file(s) 225 0 $aThe Anneli Lax new mathematical library ;$v18 300 $aIncludes index. 311 08$a0-88385-618-2 327 $aIntroduction -- pt. I. Existence theorems in dimension 1. The first existence theorem ; Sets and functions ; Neighborhoods and continuity ; Open sets and closed sets ; The completeness of the real number system ; Compactness ; Connectedness ; Topological properties and topological equivalences ; A fixed point theorem ; Mappings of a circle into a line ; The pancake problems ; Zeros of polynomials -- pt. II. Existence theorems in dimension 2. Mappings of a plane into itself ; The disk ; Initial attempts to formulate the main theorem ; Curves and closed curves ; Intuitive definition of winding number ; Statement of the main theorem ; When is an argument not a-proof? ; The angle swept out by a curve ; Partitioning a curve into short curves ; The winding number W ; Properties of A and W ; Homotopies of curves ; Constancy of the winding number ; Proof of the main theorem ; The circle winds once about each interior point ; The fixed point property ; Vector fields ; The equivalence of vector fields and mappings ; The index of a vector field around a closed curve ; The mappings of a sphere into a plane ; Dividing a ham sandwich ; Vector fields tangent to a sphere ; Complex numbers ; Every polynomial has a zero ; Epilogue: A brief glance at higher dimensional cases -- Solutions for exercises. 330 $aOver 150 problems and solutions. 410 0$aAnneli Lax New Mathematical Library 606 $aTopology 606 $aGeometry 615 0$aTopology. 615 0$aGeometry. 676 $a513/.83 700 $aChinn$b William G$01196058 701 $aSteenrod$b Norman Earl$f1910-1971.$041684 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910964239103321 996 $aFirst concepts of topology$94403600 997 $aUNINA