LEADER 03874nam 2200541 450 001 9910466523403321 005 20200520144314.0 010 $a3-0356-1302-8 010 $a3-0356-1289-7 024 7 $a10.1515/9783035612899 035 $a(CKB)3710000001393307 035 $a(MiAaPQ)EBC4946640 035 $a(DE-B1597)477543 035 $a(OCoLC)992454196 035 $a(DE-B1597)9783035612899 035 $a(Au-PeEL)EBL4946640 035 $a(CaPaEBR)ebr11604995 035 $a(OCoLC)1051137410 035 $a(EXLCZ)993710000001393307 100 $a20180921d2017 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aBasics lighting design /$fRoman Skowranek 210 1$aBasel :$cBirkhauser,$d[2017] 210 4$d©2017 215 $a1 online resource (68 pages) $cillustrations 225 1 $aBasics. Building services 311 $a3-0356-0930-6 327 $tFrontmatter -- $tContents -- $tForeword -- $tIntroduction -- $tThe Foundations of Light Planning -- $tPlanning elements -- $tPlanning scenarios -- $tIn Conclusion -- $tLiterature -- $tStandards -- $tPicture credits -- $tThe author 330 $aDaylight is the most important element determining the mood and appearance of architecture, more so than all construction materials. In office buildings in particular, the good provision of daylight and matching artificial lighting installations make an important contribution to energy conservation ? the better the use made of daylight, the less energy has to be consumed for artificial lighting. For this reason, typical architectural concepts have changed in recent years; enclosed buildings with full air-conditioning have increasingly made way to buildings that respond to the climate conditions of their environment, thereby using only a much reduced amount of energy without compromising on comfort. The BASICS Lighting Design volume includes the most important principles of daylight and artificial lighting design. Selection of subjects covered: Sizes and units Building concept design principles (layout design, building orientation and facade structure) Lighting design concepts Current daylighting and artificial lighting systems Solar screening Directing daylight 330 $aMehr als jedes andere Baumaterial bestimmt das Tageslicht Raumwirkungen, erzeugt Stimmungen, inszeniert Architektur. Eine sinnvolle Tages- und eine darauf abgestimmte Kunstlichtplanung trägt, gerade in Bürogebäuden, wesentlich zur Energieeinsparung bei: Je besser das Tageslicht genutzt wird, desto weniger Energie muss für Kunstlicht eingesetzt werden. Aus diesem Grund hat sich das Leitbild der Architektur in den letzten Jahren geändert: Aus abgeschlossenen, voll klimatisierten Gebäuden wurden zunehmend Bauwerke, die auf die klimatischen Gegebenheiten der Umgebung baulich reagieren und so, ohne Einbußen beim Komfort, nur noch wenig Energie benötigen. Im Band Basics Lichtplanung sind die wichtigsten Grundlagen zur Tages- und Kunstlichtplanung zusammengestellt. Themen sind u.a.: Größen und Einheiten Planungsregeln der Gebäudekonzeption (Grundrissgestaltung, Gebäudeorientierung und Fassadengliederung) Konzepte der Lichtplanung aktuelle Tages- und Kunstlichtsysteme Sonnenschutz Tageslichtlenkung 410 0$aBasics (Basel, Switzerland) 606 $aLighting, Architectural and decorative 608 $aElectronic books. 615 0$aLighting, Architectural and decorative. 676 $a729.28 700 $aSkowranek$b Roman$01044206 702 $aBielefeld$b Bert, $4edt$4http://id.loc.gov/vocabulary/relators/edt 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910466523403321 996 $aBasics lighting design$92469714 997 $aUNINA LEADER 06266nam 2200661Ia 450 001 9910963374603321 005 20251116195227.0 010 $a0-429-10757-9 010 $a1-283-31172-0 010 $a9786613311726 010 $a1-4398-5662-1 024 7 $a10.1201/b11033 035 $a(CKB)3460000000021495 035 $a(StDuBDS)AH21638439 035 $a(SSID)ssj0000554525 035 $a(PQKBManifestationID)11356206 035 $a(PQKBTitleCode)TC0000554525 035 $a(PQKBWorkID)10514362 035 $a(PQKB)11495125 035 $a(MiAaPQ)EBC1633611 035 $a(Au-PeEL)EBL1633611 035 $a(CaPaEBR)ebr10502472 035 $a(CaONFJC)MIL331172 035 $a(OCoLC)759865947 035 $a(OCoLC)1289859181 035 $a(FINmELB)ELB140921 035 $a(EXLCZ)993460000000021495 100 $a20101014d2012 uy 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt 182 $cc 183 $acr 200 00$aComputational fluid dynamics /$fedited by Frederic Magoules 205 $a1st ed. 210 $aBoca Raton $cChapman and Hall/CRC$d2012 215 $a1 online resource (xxxi, 375 p. )$cill 225 0 $aChapman and Hall/CRC numerical analysis and scientific computation series 300 $aA Chapman & Hall book. 311 08$a1-4398-5661-3 320 $aIncludes bibliographical references. 327 $aFinite Volumes Methods , Jerome Boudet Introduction Conservativity Control volume integration Grid General flux interpolation Resolution and time discretization Consistency, stability, and convergence Upwind interpolation Particular case of structured grids Boundary conditions Weighted Residuals Methods , Fabien Godeferd Introduction Principles of the weighted residuals method Collocation or pseudo-spectral method Least squares method Method of moments Galerkin approximation Subdomains An example Spectral Methods , Fabien Godeferd Introduction Linear problem: Galerkin, tau, and collocation methods Applications: Fourier Applications: Chebyshev Implicit equations Evaluation of nonlinear terms Smoothed-Particle Hydrodynamics (SPH) Methods , Francis Leboeuf and Jean-Christophe Marongiu Introduction SPH approximation of a function Properties of the kernel function W Barycenter of D(x i ) Choices of the kernel function W SPH approximation of differential operators applied on a function Using a Taylor series expansion Concluding remarks Application of SPH Methods to Conservation Equations , Francis Leboeuf and Jean-Christophe Marongiu General form of conservation equation Weak SPH-ALE formulation of the conservation equations Application to flow conservation equations Boundary conditions Applications of SPH and SPH-ALE methods Finite Volume Particle Methods (FVPM) , Francis Leboeuf and Jean-Christophe Marongiu Introduction Partition of unity Average of a function Derivatives of ? Conservation equation and FVPM Concluding remarks Numerical Algorithms for Unstructured Meshes , Bruno Koobus, Frederic Alauzet, and Alain Dervieux Introduction Spatial representation Toward higher spatial order Positivity of mixed element-volume formulations 3D multi-scales anisotropic mesh adaptation 3D goal-oriented anisotropic mesh adaptation Concluding remarks LES, Variational Multiscale LES, and Hybrid Models , Hilde Ouvrard, Maria-Vittoria Salvetti, Simone Camarri, Stephen Wornom, Alain Dervieux, and Bruno Koobus Introduction Numerical model Large eddy simulation (LES) Variational multiscale large eddy simulation (VMS-LES) Hybrid RANS/LES Concluding remarks Numerical Algorithms for Free Surface Flow , Alexandre Caboussat, Guillaume Jouvet, Marco Picasso, and Jacques Rappaz Introduction A short review on two-phases flow with free surfaces Some preliminary remarks on ice and glacier modeling Modeling Time splitting scheme A two-grids method for space discretization Modeling of interfacial effects Numerical results for liquid flow Numerical results for ice flow Concluding remarks Bibliography 330 $aThis book concentrates on the numerical of computational fluid mechanics (including mathematical models in computational fluid mechanics, numerical methods in computational fluid mechanics, finite volume, finite difference, finite element, spectral methods, smoothed particle hydrodynamics methods, mixed-element-volume methods, free surface flow) followed by some focus of new development of classical methods, and to the recent methods appearing in this field. The topics covered in this book are wide ranging and demonstrate the extensive use in computational fluid mechanics. The book opens with a presentation of the basis of finite volume methods, weighted residual methods and spectral methods. These specific approaches are particularly important in the context of fluid mechanics, where they cover complementary domains of application. A unified point of view is introduced, based on the weighted residuals description. Chapter 1 presents the finite volume method. Chapter 2 describes the principles of weighted residuals methods. Chapter 3 introduces the spectral method. Chapter 4 presents computational fluid dynamics based on the smoothed particle hydrodynamics (SPH) method. Chapter 5 focuses on an improved SPH method based on an arbitrary Lagrange Euler (ALE) formalism. Chapter 6, using the similarity with the finite volumes method, introduces high order flux schemes between interacting points. Chapter 7 presents some numerical methods for compressible computational fluid dynamics. Chapter 8 deals with the prediction of turbulent complex flows as occur. Chapter 9 discusses the modeling and numerical simulation of free surface flows--$cProvided by publisher. 410 0$aChapman & Hall/CRC numerical analysis and scientific computing. 606 $aFluid dynamics$xMathematics 606 $aNumerical analysis 615 0$aFluid dynamics$xMathematics. 615 0$aNumerical analysis. 676 $a532.00285 686 $aMAT021000$aSCI055000$aTEC009070$2bisacsh 701 $aMagoules$b F$g(Frederic)$0633188 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910963374603321 996 $aComputational fluid dynamics$94489136 997 $aUNINA