LEADER 01355nam2 22003013i 450 001 VAN0116273 005 20230322112052.835 010 $a978-88-921138-2-4 100 $a20180508d2018 |0itac50 ba 101 $aita 102 $aIT 105 $a|||| ||||| 200 1 $aˆ1: ‰Testo e materiali per un confronto civil law common law$fVincenzo Varano, Vittoria Barsotti 205 $a6. ed 210 $aTorino$cGiappichelli$d2018 215 $aXXII, 632 p.$d24 cm. 300 $aIn copertina: La mia libreria 461 1$1001VAN0011844$12001 $aˆLa ‰tradizione giuridica occidentale$fVincenzo Varano, Vittoria Barsotti$1210 $aTorino$cGiappichelli$1215 $avolumi$d24 cm.$v1 620 $dTorino$3VANL000001 700 1$aVarano$bVincenzo$3VANV005505$0229356 701 1$aBarsotti$bVittoria$3VANV005159$0268232 712 $aGiappichelli $3VANV107921$4650 801 $aIT$bSOL$c20230707$gRICA 912 $aVAN0116273 950 $aBIBLIOTECA DEL DIPARTIMENTO DI GIURISPRUDENZA$d00CONS VII.D.20 1 $e00UBG2881 20180508 950 $aBIBLIOTECA DEL DIPARTIMENTO DI GIURISPRUDENZA$d00CONS VII.D.20 1 $e00UBG3944 bis 20181206 996 $aTesto e materiali per un confronto civil law common law$965781 997 $aUNICAMPANIA LEADER 04529nam 22008773 450 001 9910963019303321 005 20250520153456.0 010 $a9780191047831 010 $a019104783X 010 $a9780191797712 010 $a0191797715 010 $a9780191047824 010 $a0191047821 035 $a(PPN)28092741X 035 $a(CKB)3710000000442359 035 $a(EBL)2101599 035 $a(SSID)ssj0001560717 035 $a(PQKBManifestationID)16193856 035 $a(PQKBTitleCode)TC0001560717 035 $a(PQKBWorkID)14825531 035 $a(PQKB)11652967 035 $a(StDuBDS)EDZ0001199407 035 $a(MiAaPQ)EBC2101599 035 $a(Au-PeEL)EBL2101599 035 $a(CaPaEBR)ebr11074252 035 $a(CaONFJC)MIL811208 035 $a(OCoLC)915311273 035 $a(MiAaPQ)EBC4700480 035 $a(MiAaPQ)EBC31355573 035 $a(Au-PeEL)EBL31355573 035 $a(OCoLC)913576111 035 $a(FINmELB)ELB161879 035 $a(EXLCZ)993710000000442359 100 $a20240709d2015 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aFunction spaces and partial differential equations$hVolume 2$iContemporary analysis /$fAli Taheri, Department of Mathematics, University of Sussex 205 $aFirst edition. 210 1$aOxford, United Kingdom :$cOxford University Press,$d2015. 210 4$d©2015 215 $a1 online resource (523 p.) 225 1 $aOxford lecture series in mathematics and its applications ;$vVolume 40-41 300 $aDescription based upon print version of record. 311 08$a9780198733133 311 08$a0198733135 320 $aIncludes bibliographical references and index. 327 $aCover; Preface; Contents of Volume 1; Contents of Volume 2; 1 Harmonic Functions and the Mean-Value Property; 1.1 Spherical Means; 1.2 Mean-Value Property and Smoothness; 1.3 Maximum Principles; 1.4 The Laplace-Beltrami Operator on Spheres; 1.5 Harnack's Monotone Convergence Theorem; 1.6 Interior Estimates and Uniform Gradient Bounds; 1.7 Weyl's Lemma on Weakly Harmonic Functions; 1.8 Exercises and Further Results; 2 Poisson Kernels and Green's Representation Formula; 2.1 The Fundamental Solution N of ?; 2.2 Green's Identities and Representation Formulas; 2.3 The Green's Function G = G(x,y 327 $a?)2.4 The Poisson Kernel P = P(x,y; ?); 2.5 Explicit Constructions: Balls; 2.6 Explicit Constructions: Half-Spaces; 2.7 The Newtonian Potential N[f; ?]; 2.8 Decay of the Newtonian Potential; 2.9 Second Order Derivatives and ?N[f; ?]; 2.10 Exercises and Further Results; 3 Abel-Poisson and Feje?r Means of Fourier Series; 3.1 Function Spaces on the Circle; 3.2 Conjugate Series; Magnitude of Fourier Coefficients; 3.3 Summability Methods; Tauberian Theorems; 3.4 Abel-Poisson vs. Feje?r Means of Fourier Series; 3.5 L1(T) and M(T) as Convolution Banach Algebras 327 $a6.10 Exercises and Further Results 330 $aThis is a book written primarily for graduate students and early researchers in the fields of Analysis and Partial Differential Equations (PDEs). Coverage of the material is essentially self-contained, extensive and novel with great attention to details and rigour. The strength of the book primarily lies in its clear and detailed explanations, scope and coverage, highlighting and presenting deep and profound inter-connections between different related and seeminglyunrelated disciplines within classical and modern mathematics and above all the extensive collection of examples, worked-out and hi 410 0$aOxford lecture series in mathematics and its applications ;$vVolume 40-41. 606 $aDifferential equations, Partial 606 $aFunction spaces 606 $aMathematical analysis 606 $aEquacions en derivades parcials$2thub 606 $aEspais funcionals$2thub 606 $aAnàlisi matemàtica$2thub 608 $aLlibres electrònics$2thub 615 0$aDifferential equations, Partial. 615 0$aFunction spaces. 615 0$aMathematical analysis. 615 7$aEquacions en derivades parcials 615 7$aEspais funcionals 615 7$aAnàlisi matemàtica 676 $a515.353 700 $aTaheri$b Ali$01694806 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910963019303321 996 $aFunction spaces and partial differential equations$94073590 997 $aUNINA