LEADER 11172oam 2200553 450 001 9910150213203321 005 20230803021722.0 010 $a9780273785927 (e-book) 010 $a9780273785910 (pbk.) 035 $a(MiAaPQ)EBC5173507 035 $a(MiAaPQ)EBC5176102 035 $a(MiAaPQ)EBC5137531 035 $a(MiAaPQ)EBC5833695 035 $a(Au-PeEL)EBL5137531 035 $a(CaONFJC)MIL523718 035 $a(OCoLC)1024279871 035 $a(EXLCZ)992550000001120336 100 $a20210429d2013 uy 0 101 0 $aeng 135 $aurcn|---||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aWater-resources engineering /$fDavid A. Chin 205 $aThird, international edition. 210 1$aBoston :$cPearson,$d[2013] 210 4$d©2013 215 $a1 online resource (957 p.) $cill 225 1 $aAlways learning 300 $aAdapted from United States edition. 320 $aIncludes bibliographical references and index. 327 $aCover -- Contents -- Preface -- 1 Introduction -- 1.1 Water-Resources Engineering -- 1.2 The Hydrologic Cycle -- 1.3 Designof Water-Resource Systems -- 1.3.1 Water-Control Systems -- 1.3.2 Water-Use Systems -- 1.3.3 Supporting Federal Agencies in the United States -- Problem -- 2 Fundamentals of Flow in Closed Conduits -- 2.1 Introduction -- 2.2 Single Pipelines -- 2.2.1 Steady-State Continuity Equation -- 2.2.2 Steady-State Momentum Equation -- 2.2.3 Steady-State Energy Equation -- 2.2.3.1 Energy and hydraulic grade lines -- 2.2.3.2 Velocity profile -- 2.2.3.3 Head losses in transitions and fittings -- 2.2.3.4 Head losses in noncircular conduits -- 2.2.3.5 Empirical friction-loss formulae -- 2.2.4 Water Hammer -- 2.3 Pipe Networks -- 2.3.1 Nodal Method -- 2.3.2 Loop Method -- 2.3.3 Application of Computer Programs -- 2.4 Pumps -- 2.4.1 AffinityLaws -- 2.4.2 Pump Selection -- 2.4.2.1 Commercially available pumps -- 2.4.2.2 System characteristics -- 2.4.2.3 Limits on pump location -- 2.4.3 Multiple-Pump Systems -- 2.4.4 Variable-Speed Pumps -- Problems -- 3 Design of Water-Distribution Systems -- 3.1 Introduction -- 3.2 Water Demand -- 3.2.1 Per-Capita Forecast Model -- 3.2.1.1 Estimation of per-capita demand -- 3.2.1.2 Estimation of population -- 3.2.2 Temporal Variations in Water Demand -- 3.2.3 Fire Demand -- 3.2.4 Design Flows -- 3.3 Components of Water-Distribution Systems -- 3.3.1 Pipelines -- 3.3.1.1 Minimumsize -- 3.3.1.2 Service lines -- 3.3.1.3 Pipe materials -- 3.3.2 Pumps -- 3.3.3 Valves -- 3.3.4 Meters -- 3.3.5 Fire Hydrants -- 3.3.6 Water-Storage Reservoirs -- 3.4 Performance Criteria for Water-Distribution Systems -- 3.4.1 Service Pressures -- 3.4.2 Allowable Velocities -- 3.4.3 Water Quality -- 3.4.4 Network Analysis -- 3.5 Building Water-Supply Systems -- 3.5.1 Specification of Design Flows. 327 $a3.5.2 Specification of Minimum Pressures -- 3.5.3 Determination of Pipe Diameters -- Problems -- 4 Fundamentals of Flow in Open Channels -- 4.1 Introduction -- 4.2 Basic Principles -- 4.2.1 Steady-State Continuity Equation -- 4.2.2 Steady-State Momentum Equation -- 4.2.2.1 Darcy-Weisbach equation -- 4.2.2.2 Manning equation -- 4.2.2.3 Other equations -- 4.2.2.4 Velocity distribution -- 4.2.3 Steady-State Energy Equation -- 4.2.3.1 Energy grade line -- 4.2.3.2 Specific energy -- 4.3 Water-Surface Profiles -- 4.3.1 Profile Equation -- 4.3.2 Classification of Water-Surface Profiles -- 4.3.3 Hydraulic Jump -- 4.3.4 Computation of Water-Surface Profiles -- 4.3.4.1 Direct-integration method -- 4.3.4.2 Direct-step method -- 4.3.4.3 Standard-step method -- 4.3.4.4 Practical considerations -- 4.3.4.5 Profiles across bridges -- Problems -- 5 Design of Drainage Channels -- 5.1 Introduction -- 5.2 Basic Principles -- 5.2.1 Best Hydraulic Section -- 5.2.2 Boundary Shear Stress -- 5.2.3 Cohesive versus Noncohesive Materials -- 5.2.4 Bends -- 5.2.5 Channel Slopes -- 5.2.6 Freeboard -- 5.3 Design of Channels with Rigid Linings -- 5.4 Design of Channels with Flexible Linings -- 5.4.1 General Design Procedure -- 5.4.2 Vegetative Linings and Bare Soil -- 5.4.3 RECP Linings -- 5.4.4 Riprap, Cobble, and Gravel Linings -- 5.4.5 Gabions -- 5.5 CompositeLinings -- Problems -- 6 Design of Sanitary Sewers -- 6.1 Introduction -- 6.2 Quantity of Wastewater -- 6.2.1 Residential Sources -- 6.2.2 Nonresidential Sources -- 6.2.3 Inflow and Infiltration (I/I) -- 6.2.4 Peaking Factors -- 6.3 Hydraulics of Sewers -- 6.3.1 Manning Equation with Constant n -- 6.3.2 Manning Equation with Variable n -- 6.3.3 Self-Cleansing -- 6.3.4 Scour Prevention -- 6.3.5 Design Computations for Diameter and Slope -- 6.3.6 Hydraulics of Manholes -- 6.4 System Design Criteria -- 6.4.1 System Layout. 327 $a6.4.2 Pipe Material -- 6.4.3 Depth of Sanitary Sewer -- 6.4.4 Diameter and Slope of Pipes -- 6.4.5 Hydraulic Criteria -- 6.4.6 Manholes -- 6.4.7 Pump Stations -- 6.4.8 Force Mains -- 6.4.9 Hydrogen-Sulfide Control -- 6.4.10 Combined Sewers -- 6.5 Design Computations -- 6.5.1 Design Aids -- 6.5.1.1 Manning's n -- 6.5.1.2 Minimum slope for self-cleansing -- 6.5.2 Procedure for System Design -- Problems -- 7 Design of Hydraulic Structures -- 7.1 Introduction -- 7.2 Culverts -- 7.2.1 Hydraulics -- 7.2.1.1 Submerged entrances -- 7.2.1.2 Unsubmerged entrances -- 7.2.2 Design Constraints -- 7.2.3 Sizing Calculations -- 7.2.3.1 Fixed-headwater method -- 7.2.3.2 Fixed-flow method -- 7.2.3.3 Minimum-performance method -- 7.2.4 Roadway Overtopping -- 7.2.5 Riprap/Outlet Protection -- 7.3 Gates -- 7.3.1 Free Discharge -- 7.3.2 Submerged Discharge -- 7.3.3 Empirical Equations -- 7.4 Weirs -- 7.4.1 Sharp-Crested Weirs -- 7.4.1.1 Rectangular weirs -- 7.4.1.2 V-notchweirs -- 7.4.1.3 Compound weirs -- 7.4.1.4 Other types of sharp-crested weirs -- 7.4.2 Broad-Crested Weirs -- 7.4.2.1 Rectangular weirs -- 7.4.2.2 Compound weirs -- 7.4.2.3 Gabionweirs -- 7.5 Spillways -- 7.5.1 Uncontrolled Spillways -- 7.5.2 Controlled (Gated) Spillways -- 7.5.2.1 Gates seated on the spillway crest -- 7.5.2.2 Gates seated downstream of the spillway crest -- 7.6 Stilling Basins -- 7.6.1 Type Selection -- 7.6.2 Design Procedure -- 7.7 Dams and Reservoirs -- 7.7.1 Types of Dams -- 7.7.2 Reservoir Storage -- 7.7.2.1 Sediment accumulation -- 7.7.2.2 Determination of storage requirements -- 7.7.3 Hydropower -- 7.7.3.1 Turbines -- 7.7.3.2 Turbine performance -- 7.7.3.3 Feasibility of hydropower -- Problems -- 8 Probability and Statistics in Water-Resources Engineering -- 8.1 Introduction -- 8.2 Probability Distributions -- 8.2.1 Discrete Probability Distributions. 327 $a8.2.2 Continuous Probability Distributions -- 8.2.3 Mathematical Expectation and Moments -- 8.2.4 Return Period -- 8.2.5 Common Probability Functions -- 8.2.5.1 Binomial distribution -- 8.2.5.2 Geometric distribution -- 8.2.5.3 Poisson distribution -- 8.2.5.4 Exponential distribution -- 8.2.5.5 Gamma/Pearson Type III distribution -- 8.2.5.6 Normal distribution -- 8.2.5.7 Log-normal distribution -- 8.2.5.8 Uniform distribution -- 8.2.5.9 Extreme-value distributions -- 8.2.5.10 Chi-square distribution -- 8.3 Analysis of Hydrologic Data -- 8.3.1 Estimation of Population Distribution -- 8.3.1.1 Probability distribution of observed data -- 8.3.1.2 Hypothesis tests -- 8.3.1.3 Model selection criteria -- 8.3.2 Estimation of Population Parameters -- 8.3.2.1 Method of moments -- 8.3.2.2 Maximum-likelihood method -- 8.3.2.3 Method of L-moments -- 8.3.3 Frequency Analysis -- 8.3.3.1 Normal distribution -- 8.3.3.2 Log-normal distribution -- 8.3.3.3 Gamma/Pearson Type III distribution -- 8.3.3.4 Log-Pearson Type III distribution -- 8.3.3.5 Extreme-value Type I distribution -- 8.3.3.6 General extreme-value (GEV) distribution -- 8.4 Uncertainty Analysis -- Problems -- 9 Fundamentals of Surface-Water Hydrology I: Rainfall and Abstractions -- 9.1 Introduction -- 9.2 Rainfall -- 9.2.1 Measurement of Rainfall -- 9.2.2 Statistics of Rainfall Data -- 9.2.2.1 Rainfall statistics in the United States -- 9.2.2.2 Secondary estimation of IDF curves -- 9.2.3 Spatial Averaging and Interpolation of Rainfall -- 9.2.4 Design Rainfall -- 9.2.4.1 Return period -- 9.2.4.2 Rainfall duration -- 9.2.4.3 Rainfall depth -- 9.2.4.4 Temporal distribution -- 9.2.4.5 Spatial distribution -- 9.2.5 Extreme Rainfall -- 9.2.5.1 Rational estimation method -- 9.2.5.2 Statistical estimation method -- 9.2.5.3 World-record precipitation amounts -- 9.2.5.4 Probable maximum storm. 327 $a9.3 Rainfall Abstractions -- 9.3.1 Interception -- 9.3.2 Depression Storage -- 9.3.3 Infiltration -- 9.3.3.1 The infiltration process -- 9.3.3.2 Horton model -- 9.3.3.3 Green-Ampt model -- 9.3.3.4 NRCS curve-number model -- 9.3.3.5 Comparison of infiltration models -- 9.3.4 Rainfall Excess on Composite Areas -- 9.4 Baseflow -- Problems -- 10 Fundamentals of Surface-Water Hydrology II: Runoff -- 10.1 Introduction -- 10.2 Mechanisms of Surface Runoff -- 10.3 Time of Concentration -- 10.3.1 Overland Flow -- 10.3.1.1 Kinematic-wave equation -- 10.3.1.2 NRCS method -- 10.3.1.3 Kirpich equation -- 10.3.1.4 Izzard equation -- 10.3.1.5 Kerby equation -- 10.3.2 Channel Flow -- 10.3.3 Accuracy of Estimates -- 10.4 Peak-Runoff Models -- 10.4.1 The Rational Method -- 10.4.2 NRCS-TR55 Method -- 10.5 Continuous-Runoff Models -- 10.5.1 Unit-Hydrograph Theory -- 10.5.2 Instantaneous Unit Hydrograph -- 10.5.3 Unit-Hydrograph Models -- 10.5.3.1 Snyder unit-hydrograph model -- 10.5.3.2 NRCS dimensionless unit hydrograph -- 10.5.3.3 Accuracy of unit-hydrograph models -- 10.5.4 Time-Area Models -- 10.5.5 Kinematic-Wave Model -- 10.5.6 Nonlinear-Reservoir Model -- 10.5.7 Santa Barbara Urban Hydrograph Model -- 10.5.8 Extreme Runoff Events -- 10.6 Routing Models -- 10.6.1 Hydrologic Routing -- 10.6.1.1 Modified Puls method -- 10.6.1.2 Muskingum method -- 10.6.2 Hydraulic Routing -- 10.7 Water-Quality Models -- 10.7.1 Event-Mean Concentrations -- 10.7.2 Regression Equations -- 10.7.2.1 USGS model -- 10.7.2.2 EPA model -- Problems -- 11 Design of Stormwater-Collection Systems -- 11.1 Introduction -- 11.2 Street Gutters -- 11.3 Inlets -- 11.3.1 CurbInlets -- 11.3.2 Grate Inlets -- 11.3.3 Combination Inlets -- 11.3.4 Slotted Inlets -- 11.4 Roadside and Median Channels -- 11.5 Storm Sewers -- 11.5.1 Calculation of Design Flow Rates -- 11.5.2 Pipe Sizing and Selection. 327 $a11.5.3 Manholes. 330 $aWater-Resources Engineering provides comprehensive coverage of hydraulics, hydrology, and water-resources planning and management. Presented from first principles, the material is rigorous, relevant to the practice of water resources engineering, and reinforced by detailed presentations of design applications. Prior knowledge of fluid mechanics and calculus (up to differential equations) is assumed. 410 0$aAlways learning. 606 $aHydraulics 615 0$aHydraulics. 676 $a627 700 $aChin$b David A.$0274000 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bUtOrBLW 912 $a9910150213203321 996 $aWater-resources engineering$93411404 997 $aUNINA LEADER 03048nam 2200637Ia 450 001 9910962950003321 005 20200520144314.0 010 $a0-7618-8875-6 010 $a1-283-21372-9 010 $a9786613213723 010 $a0-7618-5273-5 035 $a(CKB)2670000000066177 035 $a(EBL)662278 035 $a(OCoLC)813304625 035 $a(SSID)ssj0000648828 035 $a(PQKBManifestationID)11380961 035 $a(PQKBTitleCode)TC0000648828 035 $a(PQKBWorkID)10601678 035 $a(PQKB)10145542 035 $a(Au-PeEL)EBL662278 035 $a(CaPaEBR)ebr10434999 035 $a(CaONFJC)MIL321372 035 $a(MiAaPQ)EBC662278 035 $a(EXLCZ)992670000000066177 100 $a20110110d2010 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 12$aA focus on hope $efifty resilient students speak /$fErik E. Morales, Frances K. Trotman 205 $a1st ed. 210 $aLanham, MD $cUniversity Press of America$d2010 215 $a1 online resource (76 p.) 300 $aDescription based upon print version of record. 311 08$a0-7618-5272-7 311 08$a0-7618-5271-9 320 $aIncludes bibliographical references and index. 327 $aChapter One; Introduction; Chapter Two; Meeting the Students and Capturing Their Stories; Chapter Three; The "Resilience Cycle": An Overview; Chapter Four; The Cycle in Context: Spoke 1 "Recognizing Reality"; Chapter Five; The Cycle in Context: Spoke 2 "Manifesting Help"; Chapter Six; The Cycle in Context: Spoke 3 "Synthesizing Resources"; The Cycle in Context: Spoke 4 "Evaluating and Enhancing"; Chapter Eight; The Cycle in Context: Spoke 5 "Developed Habits and Goals"; Chapter Nine; Facilitating Resilience: Practical Implications; Appendix A; Resilient Students' Demographic Information 327 $aAppendix B The Resilience Cycle; Appendix C; Resilient Students' Institutional Data; Appendix D; Resilient Students and Major Protective Factors; Appendix E; Major Psychological Stressors Associated with Academic Achievement; Appendix F; References 330 $aThis extensive qualitative study focused on the academic resilience phenomenon, detailing the educational resilience experiences of fifty low socioeconomic students of color from various racial and ethnic backgrounds. The book chronicles specific protective factors and processes in the students' lives and several symbiotic relationships between groups of protective factors. 606 $aStudents$zUnited States$xSocial conditions 606 $aResilience (Personality trait) 606 $aAcademic achievement 615 0$aStudents$xSocial conditions. 615 0$aResilience (Personality trait) 615 0$aAcademic achievement. 676 $a370.1 700 $aMorales$b Erik E$01856086 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910962950003321 996 $aA focus on hope$94454633 997 $aUNINA