LEADER 01235nam a2200325 i 4500 001 991000879669707536 005 20020507175117.0 008 951016s1993 uk ||| | eng 020 $a1873539002 (v.1) 020 $a1873539010 (v.2) 020 $a1873539096 (pt.1) 035 $ab10770136-39ule_inst 035 $aLE01303728$9ExL 040 $aDip.to Matematica$beng 041 0 $aengfreger 082 0 $a070.5 084 $aAMS 00A20 245 14$aThe european book world :$bpart I :$bpublishing and related organizations 260 $aCambridge :$bAnderson Rand,$c1993 300 $a2 v. ;$c30 cm. 500 $aVol. 1: Publishing. - xvi, 772 p. 500 $aVol. 2: Related organizations and indexes. - xv, 837 p. 650 4$aGeneral reference works 907 $a.b10770136$b21-09-06$c28-06-02 912 $a991000879669707536 945 $aLE013 00A20 EBW11 V.I (1993)$cV. 1$g1$i2013000037455$lle013$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i10868501$z28-06-02 945 $aLE013 00A20 EBW11 V.II (1993)$cV. 2$g1$i2013000037462$lle013$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i10868513$z28-06-02 996 $aEuropean book world$9922578 997 $aUNISALENTO 998 $ale013$b01-01-95$cm$da $e-$feng$guk $h4$i2 LEADER 04720nam 2200913Ia 450 001 9910962885403321 005 20240912151758.0 010 $a9786612458200 010 $a9786612935756 010 $a9781680158977 010 $a168015897X 010 $a9781282458208 010 $a1282458205 010 $a9781282935754 010 $a1282935755 010 $a9781400831470 010 $a1400831474 010 $a9780691141954 010 $a0691141959 024 7 $a10.1515/9781400831470 035 $a(CKB)2550000000007546 035 $a(EBL)483500 035 $a(OCoLC)609855940 035 $a(SSID)ssj0000358952 035 $a(PQKBManifestationID)11925424 035 $a(PQKBTitleCode)TC0000358952 035 $a(PQKBWorkID)10378914 035 $a(PQKB)11435001 035 $a(DE-B1597)446779 035 $a(OCoLC)979835075 035 $a(DE-B1597)9781400831470 035 $a(Au-PeEL)EBL483500 035 $a(CaPaEBR)ebr10364752 035 $a(CaONFJC)MIL293575 035 $a(Au-PeEL)EBL4968545 035 $a(CaONFJC)MIL245820 035 $a(OCoLC)741250474 035 $z(PPN)199244367 035 $a(PPN)187953694 035 $a(FR-PaCSA)88838005 035 $a(MiAaPQ)EBC483500 035 $a(MiAaPQ)EBC4968545 035 $a(Perlego)734792 035 $a(FRCYB88838005)88838005 035 $a(EXLCZ)992550000000007546 100 $a20090212d2009 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aDistributed control of robotic networks $ea mathematical approach to motion coordination algorithms /$fFrancesco Bullo, Jorge Cortes, Sonia Martinez 205 $aCourse Book 210 $aPrinceton, NJ $cPrinceton University Press$d2009 215 $a1 online resource (333 p.) 225 1 $aPrinceton series in applied mathematics 300 $aDescription based upon print version of record. 320 $aIncludes bibliographical references and index. 327 $t Frontmatter -- $tContents -- $tPreface -- $tChapter One. An introduction to distributed algorithms -- $tChapter Two. Geometric models and optimization -- $tChapter Three. Robotic network models and complexity notions -- $tChapter Four. Connectivity maintenance and rendezvous -- $tChapter Five. Deployment -- $tChapter Six. Boundary estimation and tracking -- $tBibliography -- $tAlgorithm Index -- $tSubject Index -- $tSymbol Index 330 $aThis self-contained introduction to the distributed control of robotic networks offers a distinctive blend of computer science and control theory. The book presents a broad set of tools for understanding coordination algorithms, determining their correctness, and assessing their complexity; and it analyzes various cooperative strategies for tasks such as consensus, rendezvous, connectivity maintenance, deployment, and boundary estimation. The unifying theme is a formal model for robotic networks that explicitly incorporates their communication, sensing, control, and processing capabilities--a model that in turn leads to a common formal language to describe and analyze coordination algorithms. Written for first- and second-year graduate students in control and robotics, the book will also be useful to researchers in control theory, robotics, distributed algorithms, and automata theory. The book provides explanations of the basic concepts and main results, as well as numerous examples and exercises. Self-contained exposition of graph-theoretic concepts, distributed algorithms, and complexity measures for processor networks with fixed interconnection topology and for robotic networks with position-dependent interconnection topology Detailed treatment of averaging and consensus algorithms interpreted as linear iterations on synchronous networks Introduction of geometric notions such as partitions, proximity graphs, and multicenter functions Detailed treatment of motion coordination algorithms for deployment, rendezvous, connectivity maintenance, and boundary estimation 410 0$aPrinceton series in applied mathematics. 606 $aRobotics 606 $aComputer algorithms 606 $aRobots$xControl systems 615 0$aRobotics. 615 0$aComputer algorithms. 615 0$aRobots$xControl systems. 676 $a629.8/9246 686 $aSK 880$2rvk 700 $aBullo$b Francesco$0496801 701 $aCortes$b Jorge$f1974-$01797736 701 $aMartinez$b Sonia$f1974-$01797737 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910962885403321 996 $aDistributed control of robotic networks$94340176 997 $aUNINA