LEADER 04312nam 2200793Ia 450 001 9910961982403321 005 20200520144314.0 010 $a9786612722004 010 $a9781400837380 010 $a1400837383 010 $a9781282722002 010 $a128272200X 010 $a9780691120560 010 $a0691120560 024 7 $a10.1515/9781400837380 035 $a(CKB)3710000000220352 035 $a(EBL)590834 035 $a(OCoLC)671644096 035 $a(SSID)ssj0001062689 035 $a(PQKBManifestationID)12450005 035 $a(PQKBTitleCode)TC0001062689 035 $a(PQKBWorkID)11018096 035 $a(PQKB)11036764 035 $a(WaSeSS)Ind00024551 035 $a(DE-B1597)446392 035 $a(OCoLC)1054881213 035 $a(OCoLC)979582404 035 $a(DE-B1597)9781400837380 035 $a(Au-PeEL)EBL590834 035 $a(CaPaEBR)ebr10409302 035 $a(CaONFJC)MIL272200 035 $z(PPN)199244898 035 $a(PPN)18795660X 035 $a(FR-PaCSA)88838065 035 $a(MiAaPQ)EBC590834 035 $a(Perlego)734460 035 $a(FRCYB88838065)88838065 035 $a(EXLCZ)993710000000220352 100 $a20100609d2010 uy 0 101 0 $aeng 135 $aurnn#---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aNonplussed! $emathematical proof of implausible ideas /$fJulian Havil 205 $aCourse Book 210 $aPrinceton, N.J. ;$aWoodstock $cPrinceton University Press$d2010 215 $a1 online resource (213 p.) 300 $aIncludes index. 311 08$a9780691148229 311 08$a0691148228 320 $aIncludes bibliographical references and index. 327 $tFront matter --$tContents --$tPreface --$tAcknowledgements --$tIntroduction --$tChapter 1. Three Tennis Paradoxes --$tChapter 2. The Uphill Roller --$tChapter 3. The Birthday Paradox --$tChapter 4. The Spin of a Table --$tChapter 5. Derangements --$tChapter 6. Conway's Chequerboard Army --$tChapter 7. The Toss of a Needle --$tChapter 8. Torricelli's Trumpet --$tChapter 9. Nontransitive Effects --$tChapter 10. A Pursuit Problem --$tChapter 11. Parrondo's Games --$tChapter 12. Hyperdimensions --$tChapter 13. Friday the 13th --$tChapter 14. Fractran --$tThe Motifs --$tAppendix A. The Inclusion-Exclusion Principle --$tAppendix B. The Binomial Inversion Formula --$tAppendix C. Surface Area and Arc Length --$tIndex 330 $aMath--the application of reasonable logic to reasonable assumptions--usually produces reasonable results. But sometimes math generates astonishing paradoxes--conclusions that seem completely unreasonable or just plain impossible but that are nevertheless demonstrably true. Did you know that a losing sports team can become a winning one by adding worse players than its opponents? Or that the thirteenth of the month is more likely to be a Friday than any other day? Or that cones can roll unaided uphill? In Nonplussed!--a delightfully eclectic collection of paradoxes from many different areas of math--popular-math writer Julian Havil reveals the math that shows the truth of these and many other unbelievable ideas. Nonplussed! pays special attention to problems from probability and statistics, areas where intuition can easily be wrong. These problems include the vagaries of tennis scoring, what can be deduced from tossing a needle, and disadvantageous games that form winning combinations. Other chapters address everything from the historically important Torricelli's Trumpet to the mind-warping implications of objects that live on high dimensions. Readers learn about the colorful history and people associated with many of these problems in addition to their mathematical proofs. Nonplussed! will appeal to anyone with a calculus background who enjoys popular math books or puzzles. 606 $aMathematical recreations 606 $aMathematics$vMiscellanea 606 $aParadox$xMathematics 615 0$aMathematical recreations. 615 0$aMathematics 615 0$aParadox$xMathematics. 676 $a510 700 $aHavil$b Julian$f1952-$0289260 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910961982403321 996 $aNonplussed$94341267 997 $aUNINA