LEADER 06283nam 2200697 a 450 001 9910961721303321 005 20251116222227.0 010 $a1-04-027944-9 010 $a1-04-028389-6 010 $a1-003-58032-7 010 $a1-61583-908-9 010 $a1-907975-11-X 035 $a(CKB)2560000000052754 035 $a(SSID)ssj0000471313 035 $a(PQKBManifestationID)12185007 035 $a(PQKBTitleCode)TC0000471313 035 $a(PQKBWorkID)10428016 035 $a(PQKB)10225488 035 $a(Au-PeEL)EBL3016979 035 $a(CaPaEBR)ebr10426633 035 $a(OCoLC)923650749 035 $a(MiAaPQ)EBC3016979 035 $a(BIP)116526438 035 $a(BIP)29471868 035 $a(EXLCZ)992560000000052754 100 $a20101203d2010 uy 0 101 0 $aeng 135 $aurcn||||||||| 181 $ctxt 182 $cc 183 $acr 200 00$aMethodology of crevice corrosion testing for stainless steels in natural and treated seawaters /$fedited by U. Kivisa?kk, B. Espelid & D. Fe?ron 205 $a1st ed. 210 $aLeeds $cManey Pub.$d2010 215 $axviii, 134 p. $cill 225 1 $aEuropean Federation of Corrosion publications,$x1354-5116 ;$vno. 60 300 $a"Published for the European Federation of Corrosion by Maney Publishing on behalf of The Institute of Materials, Minerals & Mining." 311 08$a1-906540-99-3 320 $aIncludes bibliographical references. 327 $aTitle page -- Half title -- Contents -- European Federation of Corrosion (EFC) publications: Series introduction -- Volumes in the EFC series -- Preface -- 1 Crevice corrosion from a historical perspective -- 1.1 Introduction -- 1.2 The mechanism -- 1.3 The ferric chloride test -- 1.4 Field tests -- 1.5 Electrochemical tests -- 1.6 Conclusions -- 2 Objectives and background -- 2.1 Introduction -- 2.2 Establishment of the state-of-the-art -- 2.3 Formulation of a new synthetic seawater -- 2.4 Electrochemically controlled crevice corrosion test -- 2.5 Inter-comparison testing -- 3 Laboratory calibration -- 3.1 'Calibration' of participating laboratories in the project -- 3.2 Experimental procedure -- 3.3 Test results -- 3.3.1 Weight loss -- 3.3.2 Number of etchings/attacks -- 3.3.3 Maximum depth of attack -- 3.4 Conclusions from the 'calibration' test -- 4 Crevice formers for specimens of plate material -- 4.1 Optimisation of test parameters of importance for crevice corrosion testing -- 5 Crevice corrosion testing of tubes -- 5.1 Introduction -- 5.2 Experimental -- 5.2.1 Materials -- 5.2.2 Design of crevice former -- 5.2.3 Finite Element Method Modelling -- 5.2.4 Crevice corrosion testing -- 5.3 Results -- 5.3.1 Finite Element Method modelling -- 5.3.2 Crevice corrosion testing -- 5.4 Discussion -- 5.4.1 Specimen area -- 5.4.2 Crevice former -- 5.4.3 Clamping force -- 5.4.4 Proposed crevice former procedure for tube specimens -- 5.5 Crevice corrosion testing of stainless steel tubes applied as umbilicals -- 5.6 Conclusions from crevice corrosion testing of tubes -- 6 Formulation of new synthetic seawater for aerobic environment -- 6.1 Introduction -- 6.2 Experimental -- 6.3 Electrochemical tests -- 6.4 Crevice corrosion experiments -- 6.4.1 After test examination -- 6.4.2 Chemical method versus the biochemical method. 327 $a6.4.3 Influence of the tank material -- 6.4.4 Influence of the cathodic area -- 6.4.5 Influence of stainless steel grades -- 6.4.6 Influence of chemicals and biochemicals -- 6.4.7 Influence of temperature -- 6.4.8 Influence of the crevice holder system -- 6.5 Conclusions -- 7 Simulation of anaerobic environments -- 7.1 Introduction -- 7.2 Experimental -- 7.3 Results and discussion -- 7.3.1 Influence of the polarisation scanning rate -- 7.3.2 Breakdown potentials in sterile aerated seawater -- 7.3.3 Breakdown potentials in anaerobic seawater with SRB -- 7.3.4 Breakdown potentials Na2S solution -- 7.4 Conclusion -- 8 Synergy of aerobic and anaerobic conditions -- 8.1 Introduction -- 8.2 Synergy of aerobic and anaerobic biofi lms on EN 1.4404 -- 8.3 Synergy of aerobic and anaerobic biofi lms on EN 1.4462 and EN 1.4547 -- 8.4 Laboratory simulation of the synergy -- 8.5 Conclusion -- 9 Electrochemical simulation of aerobic environments with or without chlorine -- 9.1 Electrochemical simulation of biofilm effects and treatment of seawaters -- 9.2 Conclusions from activities related to electrochemical simulation of natural and treated seawaters -- 10 Profi ciency of crevice corrosion methods: inter-comparison tests -- 10.1 Introduction -- 10.2 Experimental -- 10.2.1 Materials -- 10.2.2 Test procedure - general -- 10.2.3 Synthetic biochemical seawater tests -- 10.2.4 Natural seawater tests -- 10.3 Results -- 10.3.1 Natural seawater tests -- 10.3.2 Synthetic biochemical seawater tests -- 10.4 Discussion -- 10.4.1 Natural seawater -- 10.4.2 Spring loaded crevice formers -- 10.4.3 Corrosivity of the synthetic biochemical seawater versus natural seawater -- 10.4.4 Synthetic biochemical seawater and Critical Crevice Temperature -- 10.5 Conclusion -- Appendix A -- Appendix B -- Appendix C -- Appendix D -- Appendix E -- Appendix F -- Appendix G -- Appendix H. 327 $aAppendix I. 330 $aThis book describes the work performed to develop a new test methodology to characterise the susceptibility of stainless steels to crevice corrosion in natural and treated seawaters. It also describes the experimental procedures to perform crevice corrosion testing. 410 0$aPublications (European Federation of Corrosion) ;$vno. 60. 606 $aStainless steel$xCorrosion 606 $aCorrosion and anti-corrosives 615 0$aStainless steel$xCorrosion. 615 0$aCorrosion and anti-corrosives. 676 $a620.1/7 701 $aKivisa?kk$b U$01872242 701 $aEspelid$b B$01872243 701 $aFe?ron$b D$0931118 712 02$aEuropean Federation of Corrosion. 712 02$aInstitute of Materials, Minerals, and Mining. 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910961721303321 996 $aMethodology of crevice corrosion testing for stainless steels in natural and treated seawaters$94481338 997 $aUNINA