LEADER 02581nam 2200601I 450 001 9910961662903321 005 20230801234434.0 010 $a1-04-016045-X 010 $a0-429-08709-8 010 $a1-4665-1064-1 035 $a(CKB)3710000000391470 035 $a(EBL)1591613 035 $a(SSID)ssj0001458888 035 $a(PQKBManifestationID)12558563 035 $a(PQKBTitleCode)TC0001458888 035 $a(PQKBWorkID)11469380 035 $a(PQKB)10748278 035 $a(Au-PeEL)EBL1591613 035 $a(CaPaEBR)ebr11167182 035 $a(OCoLC)908078714 035 $a(OCoLC)1053584594 035 $a(FINmELB)ELB142589 035 $a(MiAaPQ)EBC1591613 035 $a(EXLCZ)993710000000391470 100 $a20180611h20122013 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aGroup theory for high energy physicists /$fby Mohammad Saleem and Muhammad Rafique 205 $aFirst edition. 210 1$aBoca Raton, FL :$cCRC Press, an imprint of Taylor and Francis,$d[2012]. 210 4$dİ2013. 215 $a1 online resource (219 p.) 225 0 $aTaylor & Francis Book 300 $aDescription based upon print version of record. 311 08$a1-4665-1063-3 327 $aFront Cover; Group Theory for High Energy Physicists; Copyright; Table of Contents; Preface; About the Author; 1. Elements of Group Theory; 2. Group Representations; 3. Continuous Groups; 4. Symmetry, Lie Groups, and Physics; Appendix A: Commutation Relations between the Generators of a Semisimple Lie Group; Appendix B; Appendix C: Computation of Structure Constants; Appendix D; Back Cover 330 3 $aAlthough group theory has played a significant role in the development of various disciplines of physics, there are few recent books that start from the beginning and then build on to consider applications of group theory from the point of view of high energy physicists. Group Theory for High Energy Physicists fills that role. It presents groups, especially Lie groups, and their characteristics in a way that is easily comprehensible to physicists. 606 $aGroup theory 606 $aNuclear physics$xMathematics 615 0$aGroup theory. 615 0$aNuclear physics$xMathematics. 676 $a512.2 700 $aSaleem$b Mohammad$053446 702 $aRafique$b Muhammad$f1940- 801 0$bFlBoTFG 801 1$bFlBoTFG 906 $aBOOK 912 $a9910961662903321 996 $aGroup theory for high energy physicists$94398017 997 $aUNINA