LEADER 08636nam 2200673 a 450 001 9910960563103321 005 20251116233345.0 010 $a1-62808-476-6 035 $a(CKB)2560000000103606 035 $a(EBL)3022437 035 $a(SSID)ssj0000917601 035 $a(PQKBManifestationID)11551581 035 $a(PQKBTitleCode)TC0000917601 035 $a(PQKBWorkID)10892667 035 $a(PQKB)10914135 035 $a(MiAaPQ)EBC3022437 035 $a(Au-PeEL)EBL3022437 035 $a(CaPaEBR)ebr10719069 035 $a(OCoLC)847526911 035 $a(BIP)34198227 035 $a(EXLCZ)992560000000103606 100 $a20110506d2011 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aPolymer phase behavior /$fTimothy P. Ehlers and James K. Wilhelm, editors 205 $a1st ed. 210 $aHauppauge, N.Y. $cNova Science Publishers$dc2011 215 $a1 online resource (328 p.) 225 1 $aMaterials science and technologies 300 $aDescription based upon print version of record. 311 08$a1-61324-336-7 320 $aIncludes bibliographical references and index. 327 $aIntro -- POLYMER PHASE BEHAVIOR -- POLYMER PHASE BEHAVIOR -- Library of Congress Cataloging-in-Publication Data -- Contents -- Preface -- Chapter 1: Application of Lattice Cluster Theory to the Calculation of Miscibility and Interfacial Behavior of Hyperbranched Polymer Containing Systems -- Abstract -- Introduction -- Properties and Applications of Hyperbranched Polymers -- Application in Medicine -- Application in Chemistry -- Application in Energy Technique -- Thermodynamics of Hyperbranched Polymers -- Role of Branching -- Thermodynamic Model - Lattice Cluster Theory -- Thermodynamic Model - Wertheim Theory -- Phase Equilibria Calculation - Examples -- Hyperbranched Polymer + Solvent -- Polymer Blends -- Thermodynamics of Interfacial Properties -- Interfacial Properties - Calculation Examples -- Conclusion -- Acknowledgments -- Reference -- Chapter 2: Raman Study of the Pressure and Temperature Induced Transformations in Crystalline Polymers of C60 -- Abstract -- 1. Introduction -- 2. Research Method and Experimental Technique -- 3. Raman Spectra of the 2D-T Polymer and Pressure Induced Phase Transitions -- 4. Raman Spectra of the 2D-R Polymer and Pressure Induced Phase Transitions -- 5. Photo- and Pressure-Induced Transformations in the Linear Orthorhombic Polymer of C60 -- 5.1. Photo-Induced Transformation -- 5.2. Pressure-Induced Transformations -- 6. Photoluminescence of the C60 Polymers at High Pressure -- 7. Thermal Stability and Decomposition Kinetics of the 2D-R Polymer of C60 -- Conclusion -- Acknowledgments -- References -- Chapter 3: Polymer Phase Behavior in Nanocomposites -- Abstract -- Introduction -- Features of Nanocomposites Semicrystalline Matrix Crystallization -- The Influence of Polymer Phase Molecular Characteristics Change on Nanocomposites Mechanical Properties. 327 $aThe Influence of Polymer Phase Molecular Characteristics on Interfacial Regions Formation in Polymer Nanocomposites -- Conclusions -- References -- Chapter 4: Phase Inverting Polymer Systems in Drug Delivery and Medicine -- Abstract -- 1. Introduction -- 2. Techniques for Evaluating the Phase Inversion Process -- 2.1. Dark Ground Optics -- 2.2. Electron Paramagnetic Resonance Spectroscopy -- 2.3. Diagnostic Ultrasound Imaging -- 3. Factors Affecting In Vitro Release and Phase Inversion -- 3.1. Fast Phase-Inverting Systems -- 3.2. Slow Phase-Inverting Systems -- 3.3. Effects of Cosolvent Composition -- 3.4. Polymer Type -- 3.5. Polymer Formulation Additives -- 4. The Role of Injection Site on In Vivo Implant Behavior -- 4.1. In Vivo Release -- 4.2. Comparison of In Vitro and In Vivo Release and Phase Inversion -- 4.3. Effects of Injection Site on Release -- Conclusion -- Summary -- Characterization Techniques -- In Vitro Phase Inversion and Drug Release -- In Vivo Phase Inversion and Drug Release -- References -- Chapter 5: Eco-Friendly (co) Polyesters Containing 1,4-Cyclohexylene Units: Correlations between Stereochemistry and Phase Behavior -- Abstract -- 1. Introduction -- 2. Experimental Part -- 2.1. Materials -- 2.2. Sample Preparation -- 2.2.1. Synthesis of Poly(Butylene 1,4-Cyclohexanedicarboxylate) (PBCHD) -- 2.2.2. Synthesis of (4-6)-co-PBCHD90-50/50 Copolyester -- 2.3. Characterization -- 3. Results and Discussion -- 3.1. Preparation and Characterization of Homopolymers -- 3.1.1. Synthesis -- 3.1.2. Effect of the Molecular Structure on Thermal Properties -- 3.1.3. Analysis of the Phase Behaviour for PBCHD and PCCD Homopolymers -- 3.1.4. Relationship between Molecular Structure and Phase Behavior -- 3.1.4.1. PBCHD -- 3.1.4.2. PCCD -- 3.2. Preparation and Characterization of Copolymers -- 3.2.1. Molecular Characterization. 327 $a3.2.2. Analysis of the Phase Behaviour of Copolymers -- Conclusions -- References -- Chapter 6: The Features of Partitioning Behavior of Recombinant Amino Acid Dehydrogenases in Aqueous Two-phase Systems -- Abstract -- 1. Introduction -- 2. Expeimntal Procedures -- 2.1. Materials -- 2.2. Production of Recombinant AADHs -- 2.2.1. Production of Recombinant Bacillus badius PheDH -- 2.2.2. Production of Recombinant Pseudomonas putida POS-F84 ProDH -- 2.2.3. Production of Recombinant Bacillus cereus LeuDH -- 2.3. Partitioning Studies of Model Recombinant AADHs in Polymer-Salt ATPS -- 2.3.1. Phase Diagram Determination for PEG-4000/K2HPO4-KH2PO4 -- 2.3.2. Partition Experiment -- 2.3.3. Parameters Affecting Partition Behavior of Recombinant Enzymes -- 2.4. Activity Assay of AADHs -- 2.4.1. Determination of PheDH Activity -- 2.4.2. Determination of ProDH Activity -- 2.4.3. Determination of LeuDH Activity -- 2.5. Protein Assay -- 2.6. Purity Analysis of the Separated Enzymes from ATPS -- 3. Results and Discussion -- 3.1. Phase Behaviors of the PEG-4000/Salt ATPS -- 3.1.1. Phase Diagrams -- 3.1.2. Effect of Concentrations of Phase-Forming Components on Partitioning Behavior -- 3.1.3. Effect of Phase-Forming Polymer Molecular Weight on Partition Behavior -- 3.1.4. Effect of Salt Type -- 3.1.5. Effect of System pH on Partition Behavior -- 3.1.6. Effect of Added Salts on Partition Behavior -- 3.1.7. Effect of TIL on Partition Behavior -- 3.1.8. Effect of System Temperature on Partition Behavior -- 3.1.9. Effect of Cell Extract Loading and Phase Volume Ratio -- 3.2. Purity Analysis of Model Enzymes -- Conclusion -- Acknowledgments -- References -- Chapter 7: Phase Separation, Phase Dissolution and Crystallization in Poly(e-Caprolactone)/ Poly(Styrene-Co-Acrylonitrile) Blends -- Abstract -- Introduction -- Experimental -- Results and Discussion. 327 $aCrystallization Kinetics by Optical Microscopy -- Crystallization by Hv Light Scattering -- TEM Analysis -- Conclusion -- Review -- Acknowledgment -- References -- Chapter 8: Thermo- and pH-Sensitivity of Poly(N-Vinylpyrrolidone) in Water Media -- Abstract -- Introduction -- Thermosensitivity of PVP Solutions, Containing Salts -- Phase Separation of PVP Solutions in the Presence of Organic Compounds Capable to form Complexes with the Polymer -- Phase Separation in Water Solutions of PVP Copolymers and Derivatives -- Stimuli-Responsive Hydrogels on the Base of PVP Copolymers -- References -- Index. 330 $aThis book examines the phase behavior of polymers. The authors present topical research in this field. Topics discussed include the phase behavior of PVP as compared with that of poly(N-vinylcaprolactam); the applicability of lattice cluster theory to the calculation of miscibility; Raman study of the pressure and temperature induced transformations in crystalline polymers of C60; polymer phase behavior in nanocomposites; and, phase inverting polymer systems in drug delivery medicine and the correlation between stereochemistry and phase behavior. 410 0$aMaterials science and technologies series. 606 $aPolymers$xSolubility 606 $aPolymers$xMixing 606 $aPolymers$xSeparation 606 $aPhase rule and equilibrium 615 0$aPolymers$xSolubility. 615 0$aPolymers$xMixing. 615 0$aPolymers$xSeparation. 615 0$aPhase rule and equilibrium. 676 $a547/.70454 701 $aEhlers$b Timothy P$01862181 701 $aWilhelm$b James K$01862182 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910960563103321 996 $aPolymer phase behavior$94468410 997 $aUNINA