LEADER 00703nam0-22002651i-450- 001 990004554930403321 005 19990530 035 $a000455493 035 $aFED01000455493 035 $a(Aleph)000455493FED01 035 $a000455493 100 $a19990530d1963----km-y0itay50------ba 101 0 $aita 105 $ay-------001yy 200 1 $a<>templiers 7 Georges Bordonove 210 $as.l.$cFayard$dc1963 215 $a254 p.$d21 cm 700 1$aBordonove,$bGeorges$0131345 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990004554930403321 952 $a7/IX F 8$bBIBL.37775$fFLFBC 959 $aFLFBC 996 $aTempliers 7 Georges Bordonove$9547676 997 $aUNINA LEADER 11463nam 2200649Ia 450 001 9910960262303321 005 20251116221031.0 010 $a1-61122-683-X 035 $a(CKB)2560000000068025 035 $a(EBL)3018715 035 $a(SSID)ssj0000412872 035 $a(PQKBManifestationID)11281531 035 $a(PQKBTitleCode)TC0000412872 035 $a(PQKBWorkID)10381156 035 $a(PQKB)10201466 035 $a(MiAaPQ)EBC3018715 035 $a(Au-PeEL)EBL3018715 035 $a(CaPaEBR)ebr10661653 035 $a(OCoLC)676976016 035 $a(BIP)27059335 035 $a(EXLCZ)992560000000068025 100 $a20090427d2009 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aBiomass gasification $echemistry, processes, and applications /$fJean-Pierre Badeau and Albrecht Levi, editors 205 $a1st ed. 210 $aHauppauge, N.Y. $cNova Science Publishers$dc2009 215 $a1 online resource (490 p.) 225 0 $aRenewable energy. Research, development and policies series 300 $aDescription based upon print version of record. 311 08$a1-60741-461-9 320 $aIncludes bibliographical references and index. 327 $aIntro -- BIOMASS GASIFICATION: CHEMISTRY, PROCESSES AND APPLICATIONS -- BIOMASS GASIFICATION: CHEMISTRY, PROCESSES AND APPLICATIONS -- CONTENTS -- PREFACE -- A GLOBAL PERSPECTIVE ON BIOMASS GASIFICATION -- ABSTRACT -- INTRODUCTION: PRESENT AND FUTURE FOR BIOMASS FUELS -- THE PROSPECTS FOR BIOMASS GASIFICATION -- DISCUSSION -- ACKNOWLEDGMENTS -- REFERENCES -- INNOVATION ON BIOMASS WASTES UTILIZATION THROUGH GASIFICATION AND CO-GASIFICATION. STAGE OF DEPLOYMENT AND NEEDS FOR FURTHER R& -- D -- ABSTRACT -- 1. INTRODUCTION -- 2. BIOMASS GASIFICATION FUNDAMENTALS AND MAIN REACTIONS -- 3. EFFECT OF BIOMASS WASTES CHARACTERISTICS ON FUEL GAS COMPOSITION -- 3.1. Effect on Hydrocarbons Content -- 3.2. Effect on Ammonia Formation -- 3.3. Effect on Sulfides Formation -- 3.4. Effect on Chlorides Formation -- 4. EFFECT OF EXPERIMENTAL CONDITIONS ON GASIFICATION GAS COMPONENTS -- 4.1. Effect of Temperature -- 4.2. Effect of Oxygen Flow Rate -- 4.3. Effect of Adding a Catalyst or Sorbent -- 4.3.1. Gas Main Components -- Use of Dolomite as Catalyst -- Use of Olivine as Catalyst -- Use of Other Minerals as Catalysts -- Use of Nickel Based Catalysts -- Use of Other Catalysts -- 4.3.2. NH3 Reduction -- 4.3.3. H2S Removal -- 4.3.4. HCl Destruction -- 5. PROCESSES FOR REDUCING ASH AGGLOMERATION -- 6. HOT SYNGAS CLEANING PROCESSES -- 6.1. Particulates Removal Technologies -- 6.2. Sulfur and Halogens Based Compounds Abatement -- 6.3. Tar Abatement -- 6.4. Other Processes for Improving Syngas Properties -- 7. NEW SYNGAS UTILIZATIONS -- 7.1. Hydrogen Production -- 7.2. Fischer-Tropsch Synthesis -- 7.3. Synthesis of Methanol and Dimethyl Ether -- 7.4. Production of Bio-Based Products from Syngas Fermentation -- 7.5. Production of Heat and Power -- 8. MAIN BIOMASS GASIFICATION BARRIERS AND R& -- D NEEDS -- REFERENCES. 327 $aWILLOW BIOMASS GASIFICATION FEASIBILITY STUDY -- ABSTRACT -- 1. INTRODUCTION -- 2. GASIFICATION SYSTEM -- 3. FEEDSTOCK CHARACTERIZATION, PERFORMANCE ANALYSES, AND COST ESTIMATIONS -- 4. FEASIBILITY AND IMPLEMENTATION ISSUES -- 5. CONCLUSION -- REFERENCES -- BIOWASTES-TO-BIOFUELS ROUTES VIA GASIFICATION -- ABSTRACT -- NOMENCLATURE -- Greek symbols -- Acronyms -- 1. INTRODUCTION -- 1.1. Current Scenario -- 1.2. Biomass and Wastes as Key Renewable Alternatives -- 1.3. Challenges for Biomass Energy Implementation -- 1.4. Aim of the Chapter -- 1.5. Outline of the Chapter -- 2. BIOMASS AS A SUSTAINABLE ENERGY SOURCE -- 2.1. Global Availability and Potential of Biomass -- 2.2. Biomass Supply-Costs -- 2.3. Case study: Biomass from Friesland Province -- 3. GASIFICATION TECHNOLOGY FOR BIOMASS CONVERSION -- 3.1. Gasification Reactions -- 3.2. Types of Gasifiers -- 3.3. Mode of Operation The syngas compositions as well as -- 3.3.1. Gasifying Medium -- 3.3.2. Heat Transfer -- 3.4. Gasification Modeling in Aspen Plus -- 3.4.1. Syngas Composition -- 3.4.2. Syngas Calorific Value -- 3.4.3. Gasification Efficiency -- 3.4.4. Effect of Temperature and Gasifying Agent -- 3.4.5. Effect of Pressure and Gasifying Agent -- 3.5. State-of-the-Art of Gasification -- 4. TECHNOLOGY SELECTION FOR BIOFUELS PRODUCTION -- 4.1. System Boundaries -- 4.2. Pre-Treatment -- 4.2.1. Reception -- 4.2.2. Storage -- 4.2.3. Conveying Systems -- 4.2.4. Size Reduction -- 4.2.5.Drying -- 4.2.6. Densification -- 4.2.7. Feeding Systems -- 4.3. Cleaning Stages -- 4.4. Heat Recovery -- 4.5. Synthetic Natural Gas (SNG) -- 4.6. Methanol -- 4.7. Fischer-Tropsch -- 4.8. Hydrogen -- 4.9. Heat and Electricity -- 5. BIOFUELS APPLICATION -- 5.1. Electricity Generation -- 5.1.1. Combined Cycles IGCC -- 5.2. Heat and/or Steam Generation -- 5.3. Transport Fuels (Synfuels) -- 5.4. Chemicals. 327 $a6. EFFICIENCY EVALUATION OF DIFFERENT BIOFUEL PROCESSES -- 6.1. Mass and Energy Balances -- 6.2. Efficiency -- 6.2.1. Mass Conversion Yields -- 6.2.2. Efficiency Based on HHV and LHV of Biowastes and Biofuels -- 6.2.3. Overall Energy Efficiency -- 6.2.4. Exergetic Efficiency -- 6.2.4.1. Chemical Exergy -- 6.2.4.2. Physical Exergy -- 6.2.4.3. Total Exergy of a Stream -- 6.2.4.4. Exergetic Efficiency -- 6.2.5. Comparison of Different Efficiency Analysis -- 6.2.5.1. Exergy Losses of a Process (Irreversibilities) -- 7. SUSTAINABILITY EVALUATION -- 7.1. Environmental Impact -- 7.1.1. Biomass-to-SNG Evaluation -- 7.1.2. Biomass-to-Methanol Evaluation -- 7.1.3.Biomass-to-Fischer Tropsch Fuels Evaluation -- 7.1.4. Biomass-to-Hydrogen Evaluation -- 7.1.5. Biomass-to-Electricity Evaluation -- 7.2. Economic Analysis -- 7.3. Unidimensional and Multidimensional Accounting Methods -- CONCLUSIONS -- ACKNOWLEDGMENTS -- REFERENCES -- AUTO-GASIFICATION OF BIOMASS -- ABSTRACT -- NOMENCLATURE -- 1. INTRODUCTION -- 2. BIOMASS - RELIABLE ENERGY SOURCE? -- 3. BIO-RESIDUES - RELIABLE AND RENEWABLE ENERGY SOURCE! -- 4. AUTO-GASIFICATION - A MYTH OR REAL? -- 5. COMPONENTS OF BIOMASS -- 6. COMPOSITION OF BIOMASS -- 7. UNDERSTANDING OF GASIFICATION -- 8. PLAUSIBLE MECHANISM OF AUTO-GASIFICATION -- 9. VARIABLES AFFECTING AUTO GASIFICATION -- 9.1. Materials and Methods -- 9.2. Environment -- 9.3. Flow of Medium -- 9.4. Size and Shape -- 9.5. Structure -- 9.6. Heating Rates -- 9.7. Temperature -- 9.8. Ash -- 10. KINETICS OF AUTO-GASIFICATION -- 10.1. Development of Method -- 10.2. Demonstration of Model -- CONCLUSIONS -- REFERENCES -- BIOMASS GASIFICATION SYSTEMS INTEGRATED WITH FUEL CELLS AND MICROTURBINES -- ABSTRACT -- NOMENCLATURE -- ABBREVIATIONS -- 1. INTRODUCTION -- 2. DISTRIBUTED GENERATION -- 3. USE OF FOREST RESIDUES -- 4. GASIFICATION -- 4.1. Gasification Process. 327 $a4.2. Biomass Gasifier -- 5. FUEL CELLS -- 5.1. Basic Principles -- 5.2. Fuel Cell Electrochemical Model -- 5.3. Biomass and Fuel Cell -- 6. GAS TURBINE -- 6.1. Gas Turbine Model -- 6.2. Gas Turbine Control Configuration -- 6.3. Biomass and Gas Turbine -- 7. FUEL CELL AND GAS TURBINE HYBRID SYSTEM -- 7.1. Configuration of the SOFC-GT Plant -- CONCLUSION -- REFERENCES -- ALLOTHERMAL GASIFICATION: REVIEW OF RECENT DEVELOPMENTS -- ABSTRACT -- 1. INTRODUCTION -- 2. SYSTEMS BASED ON CIRCULATION OF SOLID HEAT CARRIERS -- 2.1. Battelle/FERCO Gasifier -- 2.2. Fast Internally Circulating Fluidized Bed (FICFB) Gasifier -- 2.3. Staged Gasifier - The Blue Tower -- 2.4. MILENA Gasifier -- 3. SYSTEMS BASED ON HEAT EXCHANGERS -- 3.1. Biomass Heat Pipe Reformer (BioHPR) -- 3.2. PulseEnhanced? Steam Reforming Technology -- CONCLUSION -- REFERENCES -- MODELLING FIXED-BED BIOMASS GASIFIERS: A REVIEW -- ABSTRACT -- 1. INTRODUCTION -- 2. GASIFIER CONFIGURATION AND OPERATION -- 3. PROCESSES OCCURRING WITHIN GASIFIERS -- 3.1. Drying -- 3.2. Pyrolysis and Cracking -- 3.3. Combustion -- 3.4. Char reduction -- 4. COMMON MODELLING APPROACHES -- 4.1. Equilibrium vs Kinetic Models -- 4.2. Mass and Energy Balance -- Mass Balance -- Energy Balance -- 4.3. Char Models -- 4.4. Summary of Recent Models -- 5. DISCUSSION -- CONCLUSION -- REFERENCES -- UPGRADING OF A BIOMASS GENERATED GAS WITH COMMERCIAL-LIKE AND HOME-MADE CATALYSTS -- ABSTRACT -- 1. INTRODUCTION -- 2. EXPERIMENTAL -- 2.1. Description of the Catalysts -- 2.2. Characterization -- 2.3. Exposure to Gasifier Output Gas -- 2.4. Catalytic Tests -- 3. RESULTS AND DISCUSSION -- 3.1. Characterization Results of the Ni Based Catalysts -- 3.2. Characterization Results of the Noble Metal Containing Catalysts -- 3.3. Catalytic Performances -- CONCLUSION -- REFERENCES. 327 $aTHE STUDY ON THE PERFORMANCE OF "MOBILE OXYGEN" CATALYSTS USED FOR BIOMASS GASIFICATION -- ABSTRACT -- INTRODUCTION -- 1. OXYGEN -- 1.1. Reactive Oxygen Species (ROS) -- 1.2. Characteristic of ROS -- 2. "MOBILE OXYGEN" CATALYSTS -- 2.1. Metal "Mobile Oxygen" Catalysts -- 2.1.1. Iron Catalysts -- I. Fe Species as the Active Site in Olivine -- II. Fe-Based Catalysts -- III. Fe Oxide-Based Catalysts -- 2.1.2. Ce, Gd Catalysts -- 2.2. Perovskite Catalysts -- 2.3. Mayenite and Related Catalysts -- CONCLUSION -- ACKNOWLEDGMENTS -- REFERENCES -- BIOMASS PRODUCTION WITH FAST-GROWING TREES ON AGRICULTURAL LAND IN COOL-TEMPERATE REGIONS: POSSIBILITIES, LIMITATIONS, CHALLENGES -- ABSTRACT -- INTRODUCTION -- DEVELOPMENT OF COMMERCIAL BIOMASS PRODUCTION BASED ON WILLOWS IN SWEDEN -- ENVIRONMENTAL CONCERNS, BIODIVERSITY AND LANDSCAPE DESIGN -- SYNERGIES AND CONFLICTS OF INTERESTS -- CONCLUSION -- REFERENCES -- PRODUCER GAS AND VEGETABLE OILS OPERATED COMPRESSION IGNITION ENGINES FOR RURAL APPLICATIONS -- ABSTRACT -- 1. INTRODUCTION -- Honge, Rice Bran and Neem Oils -- Biomass Gasification Status in India -- 2. FUELS USED AND THEIR PROPERTIES -- 3. EXPERIMENTAL SETUP -- Experimental Heat Release Estimation -- 4. RESULTS AND DISCUSSION -- 4.1. Single Fuel Operation -- 4.1.1. Crude Honge, Rice Bran and Neem Oil Operation -- 4.1.2. Biodiesel Operation -- Performance Characteristics -- 4.2. Dual Fuel Operation of Vegetable Oils with Producer Gas -- 4.3. Overall Comparison of the Different Modes of Engine Operation -- CONCLUSION -- Transesterification of Non Edible Oils -- Experiments with Methyl Esters of Honge, Rice Bran and Neem Oils -- Experiments with HOME, ROME and NOME and Producer Gas in Dual Operation -- CLOSURE -- REFERENCES -- BIOMASS GASIFIER BASED POWER PROJECTS UNDER CLEAN DEVELOPMENT MECHANISM IN INDIA: A PRELIMINARY ASSESSMENT -- ABSTRACT. 327 $a1. INTRODUCTION. 330 $aBiomass gasification means incomplete combustion of biomass resulting in the production of combustible gases consisting of carbon monoxide, hydrogen and methane. This book examines the importance of biomass gasification and assesses the possibility of biomass exploitation as an alternative to conventional fuel. 410 0$aRenewable Energy: Research, Development and Policies 606 $aBiomass gasification 606 $aChemistry, Technical 615 0$aBiomass gasification. 615 0$aChemistry, Technical. 676 $a665.7/76 701 $aBadeau$b Jean-Pierre$01868788 701 $aLevi$b Albrecht$01868789 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910960262303321 996 $aBiomass gasification$94476801 997 $aUNINA