LEADER 11756nam 2200649 a 450 001 9910959970403321 005 20251116181858.0 010 $a1-62257-002-2 035 $a(CKB)2550000001043324 035 $a(EBL)3021401 035 $a(SSID)ssj0000860673 035 $a(PQKBManifestationID)12430801 035 $a(PQKBTitleCode)TC0000860673 035 $a(PQKBWorkID)10913989 035 $a(PQKB)11714323 035 $a(MiAaPQ)EBC3021401 035 $a(Au-PeEL)EBL3021401 035 $a(CaPaEBR)ebr10683059 035 $a(OCoLC)836870374 035 $a(BIP)44321150 035 $a(BIP)25526753 035 $a(EXLCZ)992550000001043324 100 $a20090423d2011 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aProgress in optical fibers /$fPeter S. Emersone, editor 205 $a1st ed. 210 $aHauppauge, N.Y. $cNova Science Publishers$dc2011 215 $a1 online resource (416 p.) 300 $aDescription based upon print version of record. 311 08$a1-60692-477-X 320 $aIncludes bibliographical references and index. 327 $aIntro -- PROGRESS IN OPTICAL FIBERS -- PROGRESS IN OPTICAL FIBERS -- CONTENTS -- PREFACE -- RESEARCH AND REVIEW STUDIES -- Chapter 1 INTEGRATED OPTICAL RING RESONATORS: MODELLING AND TECHNOLOGIES -- Abstract -- 1. Introduction -- 2. Modelling -- 2.1. Transfer Matrix Approach -- 2.2. Bidirectional Model -- 2.3. Z-Transform Based Model -- 2.3. Time-Dependent Model -- 2.5. Modelling Based on FDTD -- 3. Technologies -- 3.1. Silica-on-Silicon Technology -- 3.2. Glass Technology -- 3.3. Lithium Niobate Technology -- 3.4. Polymer Technology -- 3.5. SiON, Si3N4 and Sin Technologies -- 3.6. SOI Technology -- 3.7. III-V Semiconductors Technology -- 4. Conclusion -- Acknowledgements -- References -- Chapter 2 VCSEL RESONATORS -- Abstract -- Introduction -- The Model -- The (GaIn)(NAs)/GaAs Quantum Well -- The (GaIn)(NAsSb)/Ga(NAs) Quantum Well -- The Electrical Model -- The Optical Model -- The Thermal Model -- The Gain Model -- Interactions between Individual Physical Phenomena -- Oxide-Confined 1.3- M GaAs-Based VCSELs [41] -- VCSEL with a Single Oxide Aperture -- VCSELs with Two Oxide Apertures -- Oxide-Confined 1.5- M GaAs-Based VCSELs -- Conclusion -- Acknowledgments -- References -- Chapter 3MICROSTUB RESONATORS BASED-WAVEGUIDES FORFILTERING AND MULTIPLEXING DEVICES -- Abstract -- Introduction -- 1. Geometrical Parameters and Method of Calculation -- 2.Rejective Filter -- 2.1. Effect of the Metallization of the Stub -- 2.2. Effects of the Geometrical Parameters -- 2.3. Improvement of the Quality Factor -- 2.4. Symmetric Wave Excitation -- 2.5. Three Dimensional Structure -- 2.6. Application to the Near Optical Regime -- 3. Selective Filter -- 4. Bent Y-Branch Waveguide -- 4.1. Y-Branch Rejective Filter -- 4.2. Y-Branch Selective Filter -- Conclusion -- References. 327 $aChapter 4DEVELOPMENT OF RAIN AND SCINTILLATIONMODELS AT KU-BAND IN SOUTHEAST ASIATROPICAL COUNTRIES -- Abstract -- Chapter 1. Introduction -- 1.1. Background -- 1.2. Objectives of the Research -- 1.3. Organization of the Thesis -- Chapter 2. Rainfall And Scintillation Models -- 2.1. Introduction -- 2.2. The Importance of Rainfall Rate -- 2.3. Rainfall in Tropical and Equatorial Regions -- 2.4. Prediction of Rainfall Attenuation Using Rainfall Rate -- 2.4.1. Prediction of Rainfall Attenuation Using Equiprobability Method -- 2.5. Prediction of Tropospheric Scintillation -- 2.5.1. Theory of Tropospheric Scintillation -- 2.5.2. Theory of Turbulence-Induced Scintillation -- 2.5.3. Description of Scintillation Effects -- 2.6. Conversion of Rainfall Rate from Sixty-Minutes to One-Minute -- 2.6.1. Segal's Method -- 2.6.2. Burgueno's Method -- 2.6.3. Chebil and Rahman's Method -- 2.6.4. Joo's Method -- 2.6.5. Moupfouma's Method -- 2.7. One-Minute Rainfall Rates Models -- 2.7.1. Dutton and Dougherty Rainfall Rate Model -- 2.7.2. KIT (Kitami Institute of Technology) Simplified Rainfall Rate Model -- 2.7.3. Morita Rainfall Rate Model -- 2.7.4. Moupfouma (Refined) Rainfall Rate Model -- 2.7.5. Rice and Holmberg Rainfall Rate Model -- 2.7.6. Douglas and Sims Rainfall Rate Distribution -- 2.7.7. Crane Rainfall Rate Distribution -- 2.7.8. ITU Rainfall Rate Model -- 2.8. One-minute Rainfall Attenuation Models -- 2.8.1. CETUC Rainfall Attenuation Model -- 2.8.2. Crane Global Rainfall Attenuation Model -- 2.8.3. DAH and ITU Rainfall Attenuation Model -- 2.8.4. Flavin Rainfall Attenuation Model -- 2.8.5. Gracia Lopez Rainfall Attenuation Model -- 2.8.6. Lin Rainfall Attenuation Model -- 2.8.7. Moupfouma Rainfall Attenuation Model -- 2.8.8. Yamada Rainfall Attenuation Model -- 2.8.9. Ong and Choo's Rainfall Attenuation Model. 327 $a2.8.10. Assis (refined) Rainfall Attenuation Model -- 2.8.11. Simple Attenuation Model (SAM Model) -- 2.9. Tropospheric Scintillation Models -- 2.9.1. ITU Tropospheric Scintillation Model -- 2.9.2. DPSP and MPSP Tropospheric Scintillation Model -- 2.9.3. Otung Tropospheric Scintillation Model -- 2.9.4. Kamp Tropospheric Scintillation Model -- 2.9.5. Karasawa Tropospheric Scintillation Model -- 2.9.6. Kamp-Tervonen-Salonen (KVS) Tropospheric Scintillation Model -- 2.9.7. Ortgies Nwet and T Tropospheric Scintillation Model -- 2.10. Other Propagation Impairments -- 2.10.1. Atmospheric Attenuation -- 2.10.2. Cloud Attenuation -- Chapter 3. Methodology -- 3.1. Introduction -- 3.2. Rainfall Measurement System -- 3.2.1. The RS-102 Tipping Bucket Rain Gauge -- 3.2.2. The Casella Tipping Bucket Rain Gauge -- 3.3. Satellite Beacon Signal Measurement System -- 3.4. Calibration of the Instruments Used for Measurement -- 3.4.1. Conversion of Rainfall Data to Rainfall Rate -- 3.4.2.Tipping Bucket Rain Gauge Calibration -- 3.4.3. Calibration of Beacon Monitor -- 3.5. Other Instruments Used -- 3.5.1. Humidity and Temperature Transmitter -- 3.5.2. Barometer Pressure Gauge -- 3.5.3. Wind Direction and Speed Transmitter -- Chapter 4. Stastical Analysis Rainfall and Scintillation PredictionModels -- 4.1. The Variation of Rainfall Amount -- 4.2. Rainfall Analysis -- 4.2.1. Percentage of Time Calculation -- 4.3. Error Analysis -- 4.3.1. The Uncertainty of Measurements -- 4.3.2. Regression Residual -- 4.4. Statistical Confidence Level -- 4.5. Test of the Prediction Models -- 4.5.1. RMS Percentage Error -- 4.6. Calculation of the Confidence Level and Interval of the Measured Data -- 4.7. Analysis of 60-Minutes Rainfall Rate Conversion Results -- 4.8. Analysis of 1-Minutes Rainfall Rate Measured Data with ExistingModels. 327 $a4.9. Analysis of 1-Minutes Rainfall Attenuation Measured Data with ExistingModels -- 4.10. Analysis of Tropospheric Scintillation Measured Data with ExistingModels -- 4.11. The Effect of Wind on Rain -- 4.12. Propagation Impairment caused by Atmospheric and CloudAttenuation -- Chapter 5. Development of Rainfall Rate, Rainfall Attenuationand Scintillation Models -- 5.1. 1-Minute Two-Part Rainfall Rate Model -- 5.2. Applying the Two-Part Model for Different Measurement Site -- 5.3. Rainfall Attenuation Model -- 5.4. Applying the Proposed Rainfall Attenuation Model at DifferentLocations -- 5.5. Tropospheric Scintillation Model -- Chapter 6. Conclusions -- 6.1. Conclusions -- 6.2. Recommendations for Future Study -- Appendix A.Rainfall Rate Climatic Regions -- Appendix B.Measurement Instruments -- Appendix C.Results in Terms of Table and Figure -- Appendix D.Matlab Coding -- List of Symbols -- Acknowledgments -- References -- Chapter 5 RESONATOR FOR SELECTIVE VORTEX LASER BEAM GENERATION IN END-PUMPED SOLID-STATE LASERS -- Abstract -- Introduction -- Basic Theory -- 1. Paraxial Wave Equation Solutions -- 1.1. Hermite-Gaussian Modes (HGMs) -- 1.2. Laguerre-Gaussian Modes (LGMs) -- 1.3. Ince-Gaussian Modes (IGMs) -- 2. Specified Laser Mode Excitation in End-Pumped Solid-State Lasers -- 2.1. Controlled 0,xnHGMode Excitation -- 2.2. Controlled IGep,p Mode Excitation -- 3. Astigmatic Mode Converter Operation -- 4. Donut-Like Vortex Beam Generator Design Flow -- Simulation Model -- Vortex Laser Beam Generation from the Three-Lens Resonator -- 1. Donut-Like Vortex Beam Generation -- 2. Rectangular Vortex Beams with Specified Vortex Number -- Conclusions -- References -- SHORT COMMUNICATIONS -- Short Communication ACOMPUTATIONAL AND EXPERIMENTAL ANALYSIS OFA STABLE-UNSTABLE OPTICAL RESONATOR FOR ADIFFUSION COOLED CO2 WAVEGUIDE LASER -- Abstract. 327 $aIntroduction -- Theoretical Frame -- Numerical Simulation Thechniques for Unstable Resonators -- Resonator Model Simulation (Unidimensional) -- Laser Head Construction: Rectangular Metal-CeramicWaveguide -- Laser Performance Analysis -- Conclusion -- Acknowledgment -- References -- ShortCommunicationBAFRACTIONALFOURIERTRANSFORMTHEORYOFOPTICALRESONATORS -- Abstract -- Introduction -- 1.MetaxialDiffraction -- 1.1.MetaxialApproximation -- 1.2.FieldAmplitudeandIrradiance -- 1.3.CoordinatesonaSphericalSegment -- 1.4.CurvatureTransparency -- 1.5.PracticalSphericalEmittersandReceivers -- 1.5.1.SphericalWaves -- 1.5.2.EquivalentSphericalEmitter -- 1.6.FraunhoferDiffraction.FourierSphere -- AproofofEq.(12) -- 1.7.GeneralTransferandFresnelDiffraction -- 1.8.CoherentImaging -- 1.9.TheRadiusMagnificationLawofBonnet -- 1.10.DiffractionandImaging -- 2.FractionalFourierOptics -- 2.1.TheFractionalOrderFourierTransform -- 2.1.1.Definition -- 2.1.2.SomePropertiesofFractionalOrderFourierTransforms -- 2.2.MetaxialDiffractioninFractionalForm[29,33,34] -- 2.2.1.FractionalPrderAssociatedwithaDiffractionPhenomenon -- 2.2.2.RealOrderTransfers -- 2.2.3.ComplexOrderTransfers[35] -- 2.2.4.CorrespondenceofParameters -- 2.2.5.RealversusComplexTransfers:AGraphicalAnalysis -- 2.2.6.TwoKindsofComplexOrderTransfers -- 2.3.CoherentImaginginFractionalForm -- 3.ApplicationtoOpticalResonators -- 3.1.RulesfortheMirrors -- 3.2.QuadraticPhaseFactorAmplitudeonaSphericalMirror -- 3.3.FieldTransferfromaMirrortotheOther -- 3.4.RoundTrip -- 3.5.ResonatingWaves.TransverseModes -- 3.6.LongitudinalModes -- 3.7.ResonatorStability -- 3.7.1.UsualStabilityCondition -- 3.7.2.GraphicalAnalysis -- 3.8.DualResonator -- 3.9.ImagingaResonator -- 3.10.ResonatorswithInternalLenses -- 4.StableResonators.BeamWaist -- 4.1.TransverseModes -- 4.2.ExistenceoftheBeamWaist -- 4.3.LocalizationoftheBeamWaist. 327 $a4.4.SizeoftheBeamWaist. 330 $aAn optical fiber (or fibre) is a glass or plastic fiber that carries light along its length. Fiber optics is the overlap of applied science and engineering concerned with the design and application of optical fibers. Optical fibers are widely used in fiber-optic communications, which permits transmission over longer distances and at higher data rates (a.k.a "bandwidth"), than other forms of communications. Fibers are used instead of metal wires because signals travel along them with less loss, and they are immune to electromagnetic interference. Fibers are also used for illumination, and in bundles can be used to carry images, allowing viewing in tight spaces. Specially designed fibers are used for a variety of other applications, including as sensors and fiber lasers.This new book presents leading research from around the world. 606 $aFiber optics 606 $aResonators 606 $aOptical fibers 615 0$aFiber optics. 615 0$aResonators. 615 0$aOptical fibers. 676 $a621.36/92 701 $aEmersone$b Peter S$01871704 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910959970403321 996 $aProgress in optical fibers$94480630 997 $aUNINA