LEADER 06405nam 2200637 a 450 001 9910959879703321 005 20251117080548.0 010 $a1-62081-438-2 035 $a(CKB)2670000000161030 035 $a(EBL)3021221 035 $a(SSID)ssj0000687732 035 $a(PQKBManifestationID)12332371 035 $a(PQKBTitleCode)TC0000687732 035 $a(PQKBWorkID)10756142 035 $a(PQKB)11491273 035 $a(MiAaPQ)EBC3021221 035 $a(Au-PeEL)EBL3021221 035 $a(CaPaEBR)ebr10681421 035 $a(OCoLC)780443410 035 $a(BIP)44320647 035 $a(BIP)34159594 035 $a(EXLCZ)992670000000161030 100 $a20110415d2011 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aCatalytic combustion /$fSophie A. Cottilard, editor 205 $a1st ed. 210 $aHauppauge, N.Y. $cNova Science Publishers$dc2011 215 $a1 online resource (210 p.) 225 1 $aChemical engineering methods and technology 300 $aDescription based upon print version of record. 311 08$a1-61324-279-4 320 $aIncludes bibliographical references and index. 327 $aIntro -- CATALYTIC COMBUSTION -- CATALYTIC COMBUSTION -- Library of Congress Cataloging-in-Publication Data -- Contents -- Preface -- Chapter 1 RE-INTERPRETATION OF FLUIDIZATION -- ABSTRACT -- 1. Introduction -- 2. Measurement Techniques -- 2.1. Optical Measurement Systems -- 2.2. Tomographic Imaging -- 2.2.1. Capacitance Measurement Systems -- 2.2.2. X-Ray Imaging -- 2.3. PEPT Techniques -- 2.3.1. Detection -- 2.3.2 Tracer Labelling -- 2.3.2.1 Radioisotopes Used in Tracer Production -- 2.3.2.2 Particle Tracer Labelling Methods -- Direct Activation Method -- Ion-Exchange Method -- Surface Modification -- 3. Bubbling Fluidization -- 3.1. Solid Flow Structure in a Bubbling Fluidized Bed -- 3.1.1. Effect of Gas Velocity on Flow Structure -- 3.1.2. Effect of Particle Size on Solid Flow Structure -- 3.2. Microscopic Behaviour of Solids within the Bed -- 3.3. Solid Mixing -- 3.4. Bubble Flow Patterns -- 3.5. Prediction of Bubble Velocity and Bubble Size -- 3.5.1. Empirical Correlations -- 3.5.2. Prediction of Bubble Rise Velocity from Particle Rise Velocity -- 3.5.3. Impact of Flow Pattern on Bubble Size -- 3.6. Effect of Particle Size on Bubble Rise Velocity and Bubble Size -- 4. Circulating Fluidization -- 4.1. CFB Operating Regimes -- 4.2. Bottom Bed -- 4.4. Acceleration Zone -- 4.5. Fully Developed Zone -- 4.6. Particle Velocities and Their Residence Time Distribution in the Riser of a CFB -- 4.7. Gas Mixing in CFB Risers -- Acknowledgments -- References -- Chapter 2 THE CATALYTIC COMBUSTION OF SOOT -- Abstract -- 1. The Origination and Formation Mechanism of Soot -- 2. The Adverse and Emission Regulations of Soot -- 3. The Structure and Chemical Characterization of Soot -- 4. DPF and Oxidation Catalyst -- 5. Catalysts of the Catalytic Combustion of Soot -- 5.1. Low-Melting Point Catalyst -- 5.2. Noble Metal Catalysts. 327 $a5.3. Complex Oxide Catalysts -- 5.4. Macroporous-Based Catalysts -- 5.5. The Simultaneous Removal of Soot and NOx under Rich Oxygen Condition -- Conclusions and Prospects -- Acknowledgment -- References -- Chapter 3 CATALYTIC COMBUSTION OVER CHEAPER METAL OXIDES -- Abstract -- 1. General Introduction -- 1.1. Conventional Combustion -- 1.2. Impact of Nitrogen Oxides -- 1.3. Paths of NOx Formation -- 2. Important NOx Controlling Technologies -- 2.1. Catalytic Combustion -- 2.2. Characteristics of Catalytic Combustion -- 3. Catalytic Combustion Applications -- 3.1. Volatile Organic Compounds (VOCs) -- 3.1.1. VOC Abatement Technologies -- 3.1.2. Catalytic Oxidation versus Thermal Oxidation -- 3.2. Gas Turbines -- 4. Catalytic Materials for Combustion Applications -- 5. Catalytic Materials for VOC Oxidation -- 5.1. Metal Oxides -- 5.1.1. Chromium Oxide -- 5.1.2. Manganese Oxides -- 5.1.3. Copper Oxide and Cobalt Oxide -- 5.1.4. Cerium Oxide -- 5.2. Mixed Metal Oxides -- 5.2.1. Doped Metal Oxides -- 5.2.2. Perovskites -- 5.3. Supports for VOCs Oxidation -- 6. Catalytic Materials for Gas Turbine Applications -- 6.1. Active Component -- 6.2. Substrate -- 6.3. Wash Coat or Support -- 6.3.1. Alumina -- 6.3.2. Zirconia -- 6.3.3. Crystal Structure and Sintering Behavior of Hexa-aluminate -- 6.4. The Commonly Used Hexa-Aluminate Materials -- 6.4.1. Barium Hexa-aluminate (BHA) -- 6.4.2. Lanthanum Hexa-Aluminate (LHA) -- Conclusion -- Acknowledgments -- References -- Chapter 4 CATALYTIC COMBUSTION: KINETICS AND REACTOR DESIGN -- Abstract -- 1. Introduction -- 2. Catalytic Combustion Technologies -- 2.1. Power Generation Systems -- 2.2. Abatement of Volatile Organic Compounds (VOCs) -- 3. Kinetic Aspects of Catalytic Combustion -- 4. Reactor Design -- Conclusions -- References -- Chapter 5 CATALYTIC COMBUSTION OF METHANE OVER CERIA-ZIRCONIA CATALYSTS -- Abstract. 327 $a1. Introduction -- 2. The CeO2-ZrO2 System -- 2.1. Synthesis, Morphological Aspects and Structural Characterization -- 2.2. Oxygen Storage Capacity and Redox Properties -- 3. Methane Combustion over CeO2-ZrO2Catalysts -- Conclusions -- References -- Index. 330 $aCatalytic combustion has been developed as a method of promoting efficient combustion over a wide range of air-to-fuel ratios with a minimum pollutant formation at low temperatures as compared to conventional flame combustion. In this book, the authors present current research in the study of catalytic combustion including commercial and industrial research in combustion and fluidization engineering; the catalytic combustion of soot; using metal oxides to improve catalytic efficiency; catalytic combustion in the removal of pollutants from exhaust gases and in the energy conversion field and the catalytic combustion of methane using ceria-zirconia. 410 0$aChemical engineering methods and technology. 606 $aCombustion 606 $aCatalysis 606 $aChemical reactions 615 0$aCombustion. 615 0$aCatalysis. 615 0$aChemical reactions. 676 $a541/.361 701 $aCottilard$b Sophie A$01860852 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910959879703321 996 $aCatalytic combustion$94466767 997 $aUNINA