LEADER 03582nam 22006013 450 001 9910959849703321 005 20231110232436.0 010 $a9781470469139 010 $a1470469138 035 $a(MiAaPQ)EBC6852910 035 $a(Au-PeEL)EBL6852910 035 $a(CKB)20667666200041 035 $a(RPAM)22493598 035 $a(OCoLC)1295274074 035 $a(EXLCZ)9920667666200041 100 $a20220117d2022 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aDyadic-Probabilistic Methods in Bilinear Analysis 205 $a1st ed. 210 1$aProvidence :$cAmerican Mathematical Society,$d2022. 210 4$dİ2021. 215 $a1 online resource (94 pages) 225 1 $aMemoirs of the American Mathematical Society ;$vv.274 300 $a"November 2021. Volume 274." 311 08$aPrint version: Martikainen, Henri Dyadic-Probabilistic Methods in Bilinear Analysis Providence : American Mathematical Society,c2022 9781470450281 320 $aIncludes bibliographical references. 327 $aCover -- Title page -- Chapter 1. Introduction -- Chapter 2. Adapted Cotlar type inequality and testing condition for _{ ,?} -- Chapter 3. Suppressed bilinear singular integrals -- Chapter 4. The big piece -- Chapter 5. End point estimates -- Chapter 6. Bilinear good lambda method -- Chapter 7. Proof of the main theorem -- Chapter 8. Weakening the kernel estimates: modified Dini-condition -- Chapter 9. Briefly about square functions -- Bibliography -- Back Cover. 330 $a"We demonstrate and develop dyadic-probabilistic methods in connection with non-homogeneous bilinear operators, namely singular integrals and square functions. We develop the full non-homogeneous theory of bilinear singular integrals using a modern point of view. The main result is a new global Tb theorem for Calderon-Zygmund operators in this setting. Our main tools include maximal truncations, adapted Cotlar type inequalities and suppression and big piece methods. While proving our bilinear results we also advance and refine the linear theory of Calderon-Zygmund operators by improving techniques and results. For example, we simplify and make more efficient some non-homogeneous summing arguments appearing in T1 type proofs. As a byproduct, we can manage with ease quite general modulus of continuity in the kernel estimates. Our testing conditions are also quite general by virtue of the big piece method of proof"--$cProvided by publisher. 410 0$aMemoirs of the American Mathematical Society 606 $aBilinear forms 606 $aCaldero?n-Zygmund operator 606 $aDyadic analysis (Social sciences) 606 $aHarmonic analysis on Euclidean spaces -- Harmonic analysis in several variables -- Singular and oscillatory integrals (Caldero?n-Zygmund, etc.)$2msc 615 0$aBilinear forms. 615 0$aCaldero?n-Zygmund operator. 615 0$aDyadic analysis (Social sciences) 615 7$aHarmonic analysis on Euclidean spaces -- Harmonic analysis in several variables -- Singular and oscillatory integrals (Caldero?n-Zygmund, etc.). 676 $a515/.2433 676 $a515.2433 686 $a42B20$2msc 700 $aMartikainen$b Henri$01802069 701 $aVuorinen$b Emil$01802070 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910959849703321 996 $aDyadic-Probabilistic Methods in Bilinear Analysis$94347600 997 $aUNINA