LEADER 06166nam 2200637Ia 450 001 9910959404403321 005 20251117101632.0 010 $a1-61470-981-5 035 $a(CKB)2670000000408480 035 $a(EBL)3022638 035 $a(SSID)ssj0000915179 035 $a(PQKBManifestationID)11508800 035 $a(PQKBTitleCode)TC0000915179 035 $a(PQKBWorkID)10867137 035 $a(PQKB)10817031 035 $a(MiAaPQ)EBC3022638 035 $a(Au-PeEL)EBL3022638 035 $a(CaPaEBR)ebr10729678 035 $a(OCoLC)923669301 035 $a(BIP)35368580 035 $a(BIP)35368550 035 $a(EXLCZ)992670000000408480 100 $a20110806d2012 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aChemical vapor synthesis of inorganic nanopowders /$fH. Y. Sohn 205 $a1st ed. 210 $aNew York $cNova Science Publishers$dc2012 215 $a1 online resource (223 p.) 225 0 $aChemistry research and applications 225 0 $aNanotechnology science and technology 300 $aDescription based upon print version of record. 311 08$a1-62100-002-8 320 $aIncludes bibliographical references (p. [189]-204) and index. 327 $aIntro -- CHEMICAL VAPOR SYNTHESIS OFINORGANIC NANOPOWDERS -- LIBRARY OF CONGRESS CATALOGING-IN-PUBLICATION DATA -- CONTENTS -- PREFACE -- Chapter 1 INTRODUCTION -- 1.1. PROMISES AND APPLICATIONS OF NANOMATERIALS -- 1.2. METHODS OF PRODUCTION -- 1.3. CHEMICAL VAPOR SYNTHESIS -- Chapter 2 PRINCIPLES OF CHEMICAL VAPOR SYNTHESIS -- ABSTRACT -- 2.1. THERMOCHEMICAL CONSIDERATIONS -- 2.2. CHLORIDE-BASED REACTIONS -- 2.3. PLASMA-ASSISTED REACTIONS -- 2.4. FLAME SYNTHESIS -- Chapter 3 METALLIC NANOPOWDERS -- ABSTRACT -- 3.1. EARLY WORK ON METAL POWDERS -- 3.2. TUNGSTEN NANOPOWDER - PLASMA-ASSISTED -- Plasma Synthesis -- Product Characterization -- Post-Treatment -- 3.3. ALUMINUM POWDER BY MAGNESIUM REDUCTION -- Experimental Work -- Results -- Conclusion -- 3.4. TITANIUM POWDER BY MAGNESIUM REDUCTION -- 3.5. COMPOSITE NANOPOWDERS -- Magnesium-Titanium -- Magnesium-Aluminum -- Tungsten-Cobalt -- Chapter 4 INTERMETALLIC AND ALLOY POWDERS -- ABSTRACT -- 4.1. TITANIUM ALUMINIDES BY MAGNESIUM REDUCTION -- Experimental Results -- 4.2. NICKEL ALUMINIDES BY MAGNESIUM REDUCTION -- Thermodynamic Equilibrium Analysis -- Experimental Work -- 4.3. NICKEL ALUMINIDES BY HYDROGEN REDUCTION -- Thermodynamic Equilibrium Analysis -- Experimental Work -- 4.4. OTHER INTERMETALLIC AND ALLOY POWDERS -- Synthesis of Fe-Co Powders -- Synthesis of NiMo Powders -- Preparation of Ni4Mo Coating on Nickel Substrate -- Chapter 5 TUNGSTEN CARBIDE NANOPOWDER -- ABSTRACT -- 5.1. SYNTHESIS FROM TUNGSTEN CHLORIDE -- Early Investigations -- Recent Work on Nano-Sized Powder -- 5.2. PLASMA-ASSISTED SYNTHESIS -- From WCl6-CH4-H2 Mixtures -- From Ammonium Paratungstate (APT) -- 5.3. SYNTHESIS FROM TUNGSTEN CARBONYL -- Chapter 6 TUNGSTEN CARBIDE - COBALT COMPOSITE NANOPOWDER -- ABSTRACT -- 6.1. SYNTHESIS FROM CHLORIDES -- Experimental Apparatus and Procedure. 327 $aExperimental Results -- Post-Treatment of Produced Composite Powders -- 6.2. PLASMA-ASSISTED SYNTHESIS -- From APT and Co3O4 -- Post-Treatment of Produced Composite Powders -- Synthesis of W-Co Followed by Separate Carburization -- Chapter 7 FLAME CHEMICAL VAPOR SYNTHESIS OF SILICA NANOPOWDER -- ABSTRACT -- 7.1. SYNTHESIS OF SIO2 NANOPARTICLES FROM TEOS -- 7.2. SYNTHESIS OF SIO NANOPARTICLES USING TMOS PRODUCED FROM SILICON SLUDGE 2 -- 7.3. FLAME VAPOR SYNTHESIS VS. FLAME SPRAY PYROLYSIS -- Effect of Precursor Concentration -- Effect of Flame Temperature -- Particle Formation Mechanisms -- Chapter 8 PLASMA-ASSISTED CHEMICAL VAPOR SYNTHESIS OF ZIRCONIA NANOPOWDER -- ABSTRACT -- 8.1. SYNTHESIS OF YTTRIA-STABILIZED ZIRCONIA NANOPOWDER -- 8.2 THERMAL STABILITY OF YTTRIA-STABILIZED ZIRCONIA NANOPOWDER -- Chapter 9 COMPUTATIONAL FLUID DYNAMIC MODELING OF THE CHEMICAL VAPOR SYNTHESIS PROCESSES -- ABSTRACT -- NOMENCLATURE -- 9.1. INTRODUCTION -- 9.2. MODEL FORMULATION -- Governing Equations -- Gas-Phase Reaction Kinetics -- Population Balance Model -- Kinetics of Particle Nucleation and Growth -- Numerical Solution -- 9.3. SIMULATION OF ALUMINUM NANOPOWDER CVS -- 9.4. SIMULATION OF SiO24 NANOPOWDER FLAME SYNTHESIS -- 9.5. SIMULATION OF WC NANOPOWDER CVS -- 9.6. COMPARISON BETWEEN THE SIMULATION RESULTS OF SIO2 AND WC NANOPARTICLES -- CONCLUSION -- ACKNOWLEDGMENTS -- REFERENCES -- INDEX. 330 $aMaterials in the form of ultrafine or nanosized powders display many useful physical, mechanical and chemical properties. The properties of nano-scaled materials are significantly different from atoms and bulks materials arise mainly from large fraction of surface atoms, high surface energy and reduced imperfections. The effects of grain size on mechanical properties have been recognized and generated much interest. It would therefore be advantageous if compounds can be produced in fine powder form from inexpensive raw materials using less energy. Their small sizes also improve hardness, fracture toughness and low-temperature ductility as well as catalytic and interfacial processes. Nanomaterials also enable lower processing temperatures compared with bulk materials and faster reaction time due to their higher surface reactivity. Thus, the production of nanosized powder is an important industrial process and is explored in this technical and informative book. 410 0$aChemistry Research and Applications/Nanotechnology Science and Technology 606 $aChemical vapor deposition 606 $aNanoparticles 606 $aOrganic compounds$xSynthesis 615 0$aChemical vapor deposition. 615 0$aNanoparticles. 615 0$aOrganic compounds$xSynthesis. 676 $a620.1/18 700 $aSohn$b Hong Yong$020128 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910959404403321 996 $aChemical vapor synthesis of inorganic nanopowders$94480576 997 $aUNINA