LEADER 00773nam0-2200277---450 001 990005603660203316 005 20220113151502.0 035 $a000560366 035 $aUSA01000560366 035 $a(ALEPH)000560366USA01 100 $a19981214d1956----km y1itay5003----ba 101 0 $aeng 102 $aNL 200 1 $aLogic and the nature of reality$fby Louis O. Kattsoff 210 $aThe Hague$cNijhoff$d1956 215 $a247 p.$d24 cm 606 0 $aLogica matematica$2BNCF 676 $a160 700 1$aKATTSOFF,$bLouis O.$013129 801 0$aIT$bSA$c20111219 912 $a990005603660203316 951 $aXV.17. 331 (F.V. KAT (353))$b2070 FIL$cXV.17.$d462439 959 $aBK 969 $aFVER 996 $aLogic and the nature of reality$9477504 997 $aUNISA LEADER 05014nam 22006855 450 001 9910958987603321 005 20250725074802.0 010 $a1-4757-2519-1 024 7 $a10.1007/978-1-4757-2519-3 035 $a(CKB)2660000000021749 035 $a(DE-He213)978-1-4757-2519-3 035 $a(MiAaPQ)EBC3084962 035 $a(PPN)238027910 035 $a(EXLCZ)992660000000021749 100 $a20130125d1996 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aTransmission Electron Microscopy $eA Textbook for Materials Science /$fby David B. Williams, C. Barry Carter 205 $a1st ed. 1996. 210 1$aNew York, NY :$cSpringer US :$cImprint: Springer,$d1996. 215 $a1 online resource (XXIX, 729 p. 1722 illus.) 311 08$a0-306-45247-2 311 08$a0-306-45324-X 320 $aIncludes bibliographical references at the end of each chapters and index. 327 $a1 The Transmission Electron Microscope -- 2 Scattering and Diffraction -- 3 Elastic Scattering -- 4 Inelastic Scattering and Beam Damage -- 5 Electron Sources -- 6 Lenses, Apertures, and Resolution -- 7 How to ?See? Electrons -- 8 Pumps and Holders -- 9 The Instrument -- 10 Specimen Preparation -- 11 Diffraction Patterns -- 12 Thinking in Reciprocal Space -- 13 Diffracted Beams -- 14 Bloch Waves -- 15 Dispersion Surfaces -- 16 Diffraction from Crystals -- 17 Diffraction from Small Volumes -- 18 Indexing Diffraction Patterns -- 19 Kikuchi Diffraction -- 20 Obtaining CBED Patterns -- 21 Using Convergent-Beam Techniques -- 22 Imaging in the TEM -- 23 Thickness and Bending Effects -- 24 Planar Defects -- 25 Strain Fields -- 26 Weak-Beam Dark-Field Microscopy -- 27 Phase-Contrast Images -- 28 High-Resolution TEM -- 29 Image Simulation -- 30 Quantifying and Processing HRTEM Images -- 31 Other Imaging Techniques -- 32 X-ray Spectrometry -- 33 The XEDS-TEM Interface -- 34 Qualitative X-ray Analysis -- 35 Quantitative X-ray Microanalysis -- 36 Spatial Resolution and Minimum Detectability -- 37 Electron Energy-Loss Spectrometers -- 38 The Energy-Loss Spectrum -- 39 Microanalysis with Ionization-Loss Electrons -- 40 Everything Else in the Spectrum -- Acknowledgements for Figures. 330 $aElectron microscopy has revolutionized our understanding the extraordinary intellectual demands required of the mi­ of materials by completing the processing-structure-prop­ croscopist in order to do the job properly: crystallography, erties links down to atomistic levels. It now is even possible diffraction, image contrast, inelastic scattering events, and to tailor the microstructure (and meso structure ) of materials spectroscopy. Remember, these used to be fields in them­ to achieve specific sets of properties; the extraordinary abili­ selves. Today, one has to understand the fundamentals ties of modem transmission electron microscopy-TEM­ of all of these areas before one can hope to tackle signifi­ instruments to provide almost all of the structural, phase, cant problems in materials science. TEM is a technique of and crystallographic data allow us to accomplish this feat. characterizing materials down to the atomic limits. It must Therefore, it is obvious that any curriculum in modem mate­ be used with care and attention, in many cases involving rials education must include suitable courses in electron mi­ teams of experts from different venues. The fundamentals croscopy. It is also essential that suitable texts be available are, of course, based in physics, so aspiring materials sci­ for the preparation of the students and researchers who must entists would be well advised to have prior exposure to, for carry out electron microscopy properly and quantitatively. 606 $aSpectrum analysis 606 $aSurfaces (Physics) 606 $aCondensed matter 606 $aMaterials$xAnalysis 606 $aBiophysics 606 $aSpectroscopy 606 $aSurface and Interface and Thin Film 606 $aCondensed Matter Physics 606 $aCharacterization and Analytical Technique 606 $aBioanalysis and Bioimaging 615 0$aSpectrum analysis. 615 0$aSurfaces (Physics) 615 0$aCondensed matter. 615 0$aMaterials$xAnalysis. 615 0$aBiophysics. 615 14$aSpectroscopy. 615 24$aSurface and Interface and Thin Film. 615 24$aCondensed Matter Physics. 615 24$aCharacterization and Analytical Technique. 615 24$aBioanalysis and Bioimaging. 676 $a621.36 676 $a620.11299 700 $aWilliams$b David B$4aut$4http://id.loc.gov/vocabulary/relators/aut$091773 702 $aCarter$b C. Barry$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910958987603321 996 $aTransmission Electron Microscopy$94411907 997 $aUNINA