LEADER 07230nam 2200565 a 450 001 9910957680403321 005 20251117005940.0 010 $a1-61728-411-4 035 $a(CKB)2670000000041872 035 $a(EBL)3020861 035 $a(SSID)ssj0000416993 035 $a(PQKBManifestationID)12130813 035 $a(PQKBTitleCode)TC0000416993 035 $a(PQKBWorkID)10436924 035 $a(PQKB)11704237 035 $a(MiAaPQ)EBC3020861 035 $a(Au-PeEL)EBL3020861 035 $a(CaPaEBR)ebr10680999 035 $a(OCoLC)662453081 035 $a(BIP)33698029 035 $a(BIP)23675977 035 $a(EXLCZ)992670000000041872 100 $a20080822d2009 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aEnvironmental modelling $enew research /$fPaul N. Findley, editor 205 $a1st ed. 210 $aNew York $cNova Science Publishers$dc2009 215 $a1 online resource (250 p.) 300 $aDescription based upon print version of record. 311 08$a1-60692-034-0 320 $aIncludes bibliographical references and index. 327 $aIntro -- ENVIRONMENTAL MODELLING:NEW RESEARCH -- CONTENTS -- PREFACE -- EXPERT COMMENTARY -- ADVANCES IN SPACE-TIME TECHNOLOGY FORASSESSING HUMAN EXPOSURE TO ENVIRONMENTALCONTAMINANTS -- Abstract -- Introduction -- Space-Time Software Systems -- Space-Time Datasets for Exposure Assessment -- Example Applications of Space-Time Exposure Reconstruction -- Conclusion -- References -- RESEARCH AND REVIEW STUDIES -- BAYESIAN BELIEF NETWORKS IN ENVIRONMENTALMODELLING: A REVIEW OF RECENT PROGRESS -- Abstract -- Introduction -- Description of a BBN -- Literature Search Methods -- Domains -- Network Structure -- Obtaining Conditional Probabilities -- Model Testing -- Sensitivity Analysis -- Use of BBNs to Support Decision-Making -- Advantages of BBNs -- Limitations of BBNs -- Conclusions and Forward Look -- Acknowledgements -- References -- EOF REGRESSION ANALYTICAL MODELWITH APPLICATIONS TO THE RETRIEVALOF ATMOSPHERIC TEMPERATURE AND GASCONSTITUENTS CONCENTRATION FROM HIGHSPECTRAL RESOLUTION INFRAREDOBSERVATIONS -- Abstract -- 1. Introduction -- 2. Mathematical Theory -- 3. EOF Based Regression Algorithm -- 3.1. Data and Parameters Space, Training Data Set and Basic Definitions -- 3.2. How Many Principal Components Do We Need to Extract? -- 3.3. The System of Regression Coefficients -- 3.3.1. Bias and Second Order Statistics of the Retrieval -- 3.3.2. Assessing the Vertical Spatial Resolution of the Retrieval, the Index iD -- 4. Implementation with Simulated Data and Assessment of theRetrieval Performance -- 4.1. More on "How Many Components doWe Need to Extract?" -- 4.2. Values of the Retrieval Interdependency Index, iD -- 5. Application to Real Observations -- 5.1. CAMEX/3 Experiment -- 5.2. EAQUATE Experiment -- 5.3. IASI Tropical Soundings -- 6. Conclusion -- Acknowledgment -- References. 327 $aCOMOVEMENT AND CYCLICAL PATTERNSOF SOUTHERN PINE BEETLE OUTBREAKS -- Abstract -- 1. Introduction -- 2. Methods and Data -- 2.1. Measuring Infestation Risk -- 2.2. Assessing Comovement -- 2.3. Assessing Cyclical Patterns -- 3. Results -- 3.1. Infestation Risk -- 3.2. Comovement -- 3.3. Cyclical Patterns -- 4. Concluding Remarks -- References -- TRENDS IN MODELLING OF RADIONUCLIDESUPTAKE BY PARTICULATE MATTER IN THE MARINEENVIRONMENT USING BOX MODELS -- Abstract -- I. Introduction -- II. Theory of Ion Exchange between Water and SuspendedParticles -- III. Development of Kinetic Box Models -- III.1. The One-Step Reversible Reaction -- II. Theory of Ion Exchange between Water and SuspendedParticles -- III. Development of Kinetic Box Models -- III.1. The One-Step Reversible Reaction -- III.2. The Two-Step Model -- III.3. The Three-Step Model -- IV. Applicability of Box Models -- Strontium -- Americium -- Plutonium -- V. Conclusion -- References -- SPATIAL DOWN-SCALING AS A TOOL TO IMPROVEMULTIFUNCTIONALITY INDICATORS IN ECONOMICMODELS -- Abstract -- 1. Introduction -- 2. Methods -- 2.1. The CAPRI Model1 -- 2.2. Regional Down-Scaling 3 -- 2.3. Meta-model of DNDC -- 2.3. Meta-model of DNDC -- 3. Indicators -- 4. Indicator Performance -- 5. Technical Solution -- 6. Conclusion -- Acknowledgements -- References -- ADAPTIVE CONTROL METHODOLOGY AND SOMEAPPLICATIONS IN ENVIRONMENTAL MODELLING -- Abstract -- 1. Introduction -- 2. Adaptive Control Methodology -- 2.1. The Methodology -- 2.2. Environmental Modelling with ACM -- 3. A Sustainability Case Study -- 3.1. Background -- 3.2. The Initial Policies in 'NOW - 5 years' -- 3.3. Monitoring 'NOW' the Initial Policies -- 3.4. Revisiting 'NOW' the Initial Policies -- 4. Conclusion -- References -- PREDICTION OF SEDIMENT SOURCE AREASWITHIN WATERSHEDS AS AFFECTED BY SOIL DATARESOLUTION -- Abstract -- Introduction. 327 $aDescription of SWAT -- STATSGO versus SSURGO -- Study Area within the Elm River Watershed -- Study Area within the Cowhouse Creek Watershed -- Model Set up -- Assessment Method -- Results and Discussion -- Calibrated Models -- Predicted Sediment -- Conclusions -- Acknowledgement -- References -- LANDSLIDE MODELING -- Abstract -- 1. Introduction -- 2. Landslide Mapping -- 3. Physically-Based Landslide Models -- 3.1. Factor of Safety (FS) -- 3.2. Critical Rainfall Model -- 4. Statistical Landslide Model -- 4.1. Bivariate Analysis -- 4.2. Multivariate Analysis -- 5. Model Validation -- 6. Examples of Landslide Models -- 6.1. A Critical Rainfall Model -- 6.2. A Certainty Factor Model -- 6.3. A Logistic Regression Model -- 7. Conclusion -- References -- SPATIAL MODELLING OF GROUNDWATERPOLLUTION USING A GIS -- Abstract -- Introduction -- Study Area -- Geology and Hydrogeology -- Materiel and Methods -- Sampling and Analysis -- GIS Approaches -- Multivariate Analysis -- Results -- 1. Physico-Chemical Parameters -- 2. Cation Chemistry -- 3. Anion Chemistry -- 4. Heavy Metals Distributions in Groundwater Samples -- 5. Multivariate Analysis -- 6. GIS Analysis -- Conclusion -- References -- INDEX. 330 $aEnvironment models seek to re-create what occurs during some event in nature. It is much easier and practical to create computer models to run certain experiments than it is to go out and do the same experiment again and again. Computer models take equations which were usually formulated through testing under natural conditions, and put them into computer programs where they can be run quickly and easily. A model can then output the results of doing these equations into a form which can be output to a screen for the user to view. The aim is to improve the capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales. This new book presents the latest research from around the globe. 606 $aEnvironmental sciences$xMathematical models 615 0$aEnvironmental sciences$xMathematical models. 676 $a577.01/5118 701 $aFindley$b Paul N$01869962 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910957680403321 996 $aEnvironmental modelling$94478256 997 $aUNINA