LEADER 03360nam 2200541 450 001 9910566445003321 005 20221224003100.0 010 $a1-00-331640-9 010 $a1-003-31640-9 010 $a1-000-64471-5 035 $a(CKB)5850000000023396 035 $a(NjHacI)995850000000023396 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/81389 035 $a(MiAaPQ)EBC7245217 035 $a(Au-PeEL)EBL7245217 035 $a(EXLCZ)995850000000023396 100 $a20221224d2022 uy 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aComputational Modelling of Concrete and Concrete Structures /$fedited by Gu?nther Meschke, Bernhard Pichler, Jan G. Rots 205 $aFirst edition. 210 $cTaylor & Francis$d2022 210 1$aBoca Raton :$cTaylor & Francis,$d2022. 215 $a1 online resource (766 pages) $cillustrations 311 $a1-03-232724-3 320 $aIncludes bibliographical references and index. 330 $aComputational Modelling of Concrete and Concrete Structures contains the contributions to the EURO-C 2022 conference (Vienna, Austria, 23-26 May 2022). The papers review and discuss research advancements and assess the applicability and robustness of methods and models for the analysis and design of concrete, fibre-reinforced and prestressed concrete structures, as well as masonry structures. Recent developments include methods of machine learning, novel discretisation methods, probabilistic models, and consideration of a growing number of micro-structural aspects in multi-scale and multi-physics settings. In addition, trends towards the material scale with new fibres and 3D printable concretes, and life-cycle oriented models for ageing and durability of existing and new concrete infrastructure are clearly visible. Overall computational robustness of numerical predictions and mathematical rigour have further increased, accompanied by careful model validation based on respective experimental programmes. The book will serve as an important reference for both academics and professionals, stimulating new research directions in the field of computational modelling of concrete and its application to the analysis of concrete structures. EURO-C 2022 is the eighth edition of the EURO-C conference series after Innsbruck 1994, Bad Gastein 1998, St. Johann im Pongau 2003, Mayrhofen 2006, Schladming 2010, St. Anton am Arlberg 2014, and Bad Hofgastein 2018. The overarching focus of the conferences is on computational methods and numerical models for the analysis of concrete and concrete structures. 606 $aConcrete construction 606 $aComputer-aided design 606 $aStructural analysis (Engineering) 610 $aStructural engineering 615 0$aConcrete construction. 615 0$aComputer-aided design. 615 0$aStructural analysis (Engineering) 676 $a624.1 700 $aMeschke$b Günther$4edt$01356453 702 $aRots$b Jan G. 702 $aPichler$b Bernhard 702 $aMeschke$b Gu?nther 801 0$bNjHacI 801 1$bNjHacl 906 $aBOOK 912 $a9910566445003321 996 $aComputational Modelling of Concrete and Concrete Structures$93361020 997 $aUNINA LEADER 09602nam 2200601 a 450 001 9910957633203321 005 20251116181916.0 010 $a1-62081-885-X 035 $a(CKB)2550000001043884 035 $a(EBL)3021852 035 $a(SSID)ssj0000883432 035 $a(PQKBManifestationID)12439960 035 $a(PQKBTitleCode)TC0000883432 035 $a(PQKBWorkID)10925410 035 $a(PQKB)11529234 035 $a(MiAaPQ)EBC3021852 035 $a(Au-PeEL)EBL3021852 035 $a(CaPaEBR)ebr10686156 035 $a(OCoLC)923667127 035 $a(BIP)44323165 035 $a(BIP)36035949 035 $a(EXLCZ)992550000001043884 100 $a20110726d2012 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aFunctionally graded materials /$fNathan J. Reynolds, editor 205 $a1st ed. 210 $aNew York $cNova Science Publishers$dc2012 215 $a1 online resource (336 p.) 225 1 $aMaterials science and technologies 300 $aDescription based upon print version of record. 311 08$a1-61209-616-6 320 $aIncludes bibliographical references and index. 327 $aIntro -- FUNCTIONALLY GRADED MATERIALS -- FUNCTIONALLY GRADED MATERIALS -- CONTENTS -- PREFACE -- A LINEAR MULTI-LAYERED MODEL AND ITS APPLICATIONS IN FRACTURE AND CONTACT MECHANICS OF ELASTIC FUNCTIONALLY GRADED MATERIALS -- 1. INTRODUCTION -- 2. MATHEMATICAL MODELING OF FGMS -- 2.1. Basic Equations -- 2.1.1. Plane Problem -- 2.1.2. Antiplane Problem -- 2.1.3. Axisymmetric Problem -- 2.1.3. Axisymmetric Torsion Problem -- 2.2. Exponential Model -- 2.2.1. General Solutions of Plane Problem in Fourier Transform Domain -- 2.2.2. General Solutions of Antiplane Problem in Fourier Transform Domain -- 2.2.3. General Solutions of Axisymmetric Problem in Hankel Transform Domain -- 2.2.4. General Solutions of Axisymmetric Torsion Problem in Hankel Transform Domain -- 2.3. HML Model -- 2.3.1. General Solutions of Plane Problem in Fourier Transform Domain -- 2.3.2. General Solutions of Antiplane Problem in Fourier Transform Domain -- 2.3.3. General Solutions of Axisymmetric Problem in Hankel Transform Domain -- 2.3.4. General Solutions of Axisymmetric Torsion Problem in Hankel Transform Domain -- 2.4. Linear Multi-Layered (LML) Model -- 2.4.1. General Solutions of Plane Problem in Fourier Transform Domain -- 2.4.2. General Solutions of Antiplane Problem in Fourier Transform Domain -- 2.4.3. General Solutions of Axisymmetric Problem in Hankel Transform Domain -- 2.4.4. General Solutions of Axisymmetric Torsion Problem in Hankel Transform Domain -- 3. FRACTURE MECHANICS OF FGMS -- 3.1. Plane Fracture -- 3.1.1. Transfer Matrix and Dual Integral Equations -- 3.1.2. Cauchy Singular Integral Equations -- 3.1.3. Numerical Examples -- 3.2. Antiplane Fracture -- 3.2.1. Transfer Matrix and Dual Integral Equations -- 3.2.2. Cauchy Singular Integral Equation -- 3.2.3. Numerical Examples -- 3.3. Axisymmetric Fracture -- 3.3.1. Transfer Matrix and Dual Integral Equations. 327 $a3.3.2. Singular Integral Equation and Stress Intensity Factor -- 3.3.4. Numerical Examples -- 3.4. Dynamic Fracture -- 3.4.1. Formulation -- 3.4.2. Numerical Examples -- 4. CONTACT MECHANICS OF FGMS -- 4.1. Plane Sliding Frictional Contact -- 4.1.1. Fundamental Solutions to an FGM Coated Half-Plane -- 4.1.2. Punch Problems for an FGM Coated Half-Plane -- 4.1.3. On the Solution of the Integral Equations and the Contact Stresses on the Surface -- 4.1.4. Examples -- (i) Rigid Flat Punch -- (ii) Rigid Triangular Punch -- (iii) Rigid Cylindrical Punch -- (iv) Rigid Wedge-Shaped Punch -- 4.1.5. Numerical Examples -- 4.2. Plane Normal Contact with Finite Friction -- 4.2.1. Formulation -- 4.2.2. The Goodman Approximation -- 4.2.3. Fully Coupled Normal Contact -- 4.2.4. Numerical Examples -- 4.3. Plane Fretting Contact Problem -- 4.3.1. A Monotonically Increasing Tangential Load -- 4.3.2. A Cycled Tangential Load -- 4.3.2. Numerical Examples -- 4.4. Axisymmetric Contact Mechanics -- 4.4.1. Fundamental Solutions to an FGM Coated Half-Space -- 4.4.2. Axisymmetric Frictionless Contact Problem for an FGM Coated Half-Space -- 4.4.3. Examples -- (i) Frictionless Rigid Flat Circular Punch -- (ii) Frictionless Rigid Spherical Punch -- (iii) Frictionless Rigid Conical Punch -- 4.4.4. Numerical Examples -- 4.5. Axisymmetric Normal Contact -- 4.5.1. Formulation -- 4.5.3. Numerical Examples -- 4.6. Axisymmetric Fretting Contact -- 4.6.1. Normal Contact Pressure -- 4.6.2. Monotonically Increasing Torsional Loading -- 4.6.3. Cyclic Torsional Loading -- 4.6.4. Numerical Examples -- REFERENCES -- FUNCTIONALLY GRADED MATERIALS OBTAINED BY COMBUSTION SYNTHESIS TECHNIQUES: A REVIEW -- ABSTRACT -- 1. FUNCTIONALLY GRADED MATERIALS: MANUFACTURING PROCESSES -- 2. COMBUSTION SYNTHESIS -- 2.1. Main Advantages of Combustion Synthesis. 327 $a2.2. Types of CS Reactions and Obtained Products and Materials -- 2.3. Ignition Techniques -- 2.3.1. Microwaves and Combustion Synthesis -- 3. FGMS OBTAINED BY CS TECHNIQUES -- 3.1. Ceramic-Based FGMs -- 3.2. Cermets and Intermetallic Matrix Based FGMs -- 3.3. Metal- and/or Intermetallic-Based FGMs -- CONCLUSION -- REFERENCES -- THE METHOD OF FUNDAMENTAL SOLUTIONS FOR THERMOELASTIC ANALYSIS OF FUNCTIONALLY GRADED MATERIALS -- ABSTRACT -- 1. INTRODUCTION -- 2. MATHEMATICAL FORMULATION -- 2.1. Basic Equations of Heat Conduction in FGMs -- (1) Heat Conduction Equation -- (2) Thermal boundary and initial conditions -- 2.2. Basic Equations of Thermoelasticity in FGMs -- (1) Governing Equations -- (2) Mechanical Boundary Conditions -- 3. MATERIAL PROPERTIES OF FGMS -- (1) Power-Law Type FGM (P-FGM)[30] -- (2) Exponential Type FGM (E-FGM)[31] -- 4. THE METHOD OF FUNDAMENTAL SOLUTIONS FOR THERMAL ANALYSIS -- 4.1. Complementary Solutions -- 4.2. Particular Solutions -- 4.3. Complete Solutions -- 4.4. Numerical Examples -- Example 4.4.1. Thermal shock problem. -- Example 4.4.2. Thermal shock problem. -- 5. THE METHOD OF FUNDAMENTAL SOLUTIONS FOR THERMOELASTIC ANALYSIS -- 5.1. Complementary Solutions -- 5.2. Particular Solutions -- 5.3. Complete Solutions -- 5.4. Numerical Examples -- CONCLUSION -- REFERENCES -- THREE-DIMENSIONAL THERMAL BUCKLING ANALYSIS OF FUNCTIONALLY GRADED ARBITRARY STRAIGHT-SIDED QUADRILATERAL PLATES -- ABSTRACT -- 1. INTRODUCTION -- 2. THEORETICAL FORMULATION -- 2.1. FGMs Relations -- 2.2. Pre-Buckling Analysis -- 2.3. Thermal Buckling Equations -- 2.4. DQ Solution Procedure -- 3. NUMERICAL RESULTS -- CONCLUSION -- APPENDIX A -- REFERENCES -- THE MECHANICAL RESPONSE OF METAL-CERAMIC FUNCTIONALLY GRADED MATERIALS: MODELS AND EXPERIENCES -- ABSTRACT -- INTRODUCTION -- CONSTITUTIVE MODELS FOR METAL-CERAMIC COMPOSITES -- Elasticity. 327 $aPlasticity -- Fracture -- MATERIAL CHARACTERIZATION -- EXPERIMENTAL VALIDATION -- CONCLUSION -- REFERENCES -- SIMULATION OF QUASI-STATIC CRACK PROPAGATION IN FUNCTIONALLY GRADED MATERIALS -- Abstract -- 1.Introduction -- 1.1.TheProblemofElasticityinFunctionallyGradedMaterials -- 1.2.BasicRegularityResultsandEnergySolutions -- 2.AsymptoticBehavioroftheDisplacementFieldNeartheCrackTip -- 2.1.TheCaseofHomogeneousMaterials -- 2.2.TheCaseofInhomogeneousMaterials -- 2.3.CalculationofStressIntensityFactors -- JUSTIFICATION -- 3.FractureCriterion-theEnergyPrinciple -- ASYMPTOTICANALYSIS -- ASYMPTOTICEXPANSIONOFTHECHANGEOFPOTENTIALENERGY -- 3.1.TheChangeofPotentialEnergyinHomogeneousMaterials -- CONSTRUCTIONOFANINNERANDOUTEREXPANSION -- THECONNECTIONTOTHEIRWINFRACTURECRITERION -- 3.2.TheChangeofPotentialEnergyinInhomogeneousMaterials -- 4.NumericalSimulationofQuasi-StaticCrackPropagation -- 4.1.ComputationofGlobalIntegralCharacteristics -- 4.2.ComputationofLocalIntegralCharacteristics -- 5.Examples -- 5.1.NumericalResultsforHomogeneousMaterials -- 5.2.NumericalResultsforaFunctionallyGradedMaterial -- 6.Conclusion -- References -- CYLINDRICALLY-OR SPHERICALLY-SYMMETRIC PROBLEMS OF FUNCTIONALLY GRADED MATERIALS -- Abstract -- 1.Introduction -- 2.HollowFGMCylinders -- 3.HollowFGMSpheres -- 4.RotatingHollowFGMAnnuli -- 5.ThermoelasticFGMCylinders -- 5.1.Steady-StateThermoelasticAnalysis -- 5.2.TransientThermoelasticAnalysis -- 6.ElectroelasticProblemsofFGMs -- 6.1.FunctionallyGradedPiezoelectricHollowCylinders -- 6.2.FunctionallyGradedPiezoelectricSphericalShells -- 7.Conclusion -- References -- FUNCTIONALLY GRADED FOAMS FOR FILTER FABRICATION -- ABSTRACT -- RECENT DEVELOPMENTS -- PRODUCTION OF FUNCTIONALLY GRADED FOAMS -- THE FOAM CHARACTERIZATION -- CONCLUSION -- REFERENCES -- INDEX. 330 $aFunctionally graded materials (FGMs) are composites with gradually varying material content. This new book presents current research in the study of FGMs, including the fracture and contact problems of functionally graded materials; FGMs obtained by combustion synthesis techniques; thermoplastic simulation of FGMs; the thermal buckling analysis of functionally graded arbitrary straight-sided quadrilateral plates; the mechanical response of metal-ceramic FGMs and simulation of quasi-static crack propagation in FGMs. 410 0$aMaterials science and technologies series. 606 $aFunctionally gradient materials 615 0$aFunctionally gradient materials. 676 $a620.1/18 701 $aReynolds$b Nathan J$01870308 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910957633203321 996 $aFunctionally graded materials$94478714 997 $aUNINA