LEADER 05423nam 2200649Ia 450 001 9910957625103321 005 20251116153359.0 010 $a9781283733076 010 $a1283733072 010 $a9780191638015 010 $a0191638013 010 $a9780191748356 010 $a0191748358 035 $a(CKB)24235093600041 035 $a(MiAaPQ)EBC3054949 035 $a(MiAaPQ)EBC7038856 035 $a(Au-PeEL)EBL3054949 035 $a(CaPaEBR)ebr10620797 035 $a(CaONFJC)MIL404557 035 $a(OCoLC)922971457 035 $a(Au-PeEL)EBL7038856 035 $a(OCoLC)852967923 035 $a(EXLCZ)9924235093600041 100 $a20121106d2013 uy 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aMany-body physics with ultracold gases /$fedited by Christophe Salomon, Georgy V. Shlyapnikov and Leticia F. Cugliandolo 205 $a1st ed. 210 $aOxford $cOxford University Press$d2013 215 $a1 v. $cill 225 1 $aLecture Notes of the les Houches Summer School Ser. ;$vv.94 300 $aSelected conference papers. 311 08$a9780199661886 327 $aCover -- Contents -- List of participants -- 1 Strongly correlated bosons and fermions in optical lattices -- 1.1 Introduction -- 1.2 Optical lattices -- 1.3 The Bose-Hubbard model and the superfluid to Mott insulator transition -- 1.4 One-dimensional bosons and bosonization -- 1.5 From free fermions to Fermi liquids -- 1.6 Mott transition of fermions: three dimensions -- 1.7 One-dimensional fermions -- 1.8 Conclusion -- Acknowledgements -- References -- 2 Ultracold atoms in optical lattices -- 2.1 Overview -- 2.2 Introduction -- 2.3 Basics of optical lattices -- 2.4 Detection methods -- 2.5 Bose- and Fermi-Hubbard models -- 2.6 Quantum magnetism with ultracold atoms in optical lattices -- 2.7 Single-site and single-atom resolved imaging of quantum gases in optical lattices -- References -- 3 The few-atom problem -- 3.1 Overview -- 3.2 The two-body problem and resonance width -- 3.3 Basics of the three-body problem with short-range interactions -- 3.4 The method of Skorniakov and Ter-Martirosian (STM) for few-body problems with resonant short-range interactions -- 3.5 Final remarks -- Acknowledgements -- References -- 4 Entanglement in many-body quantum systems -- 4.1 Introduction -- 4.2 Entanglement in many-body systems: pure states -- 4.3 Entanglement in many-body systems: mixed states -- 4.4 Entanglement and area laws -- 4.5 Tensor network states -- 4.6 Conclusions -- References -- 5 Quantum Hall states of ultracold atomic gases -- 5.1 Introduction -- 5.2 Rapid rotation -- 5.3 Optically induced gauge fields -- 5.4 Bose gases -- 5.5 Fermi gases -- 5.6 Summary -- Acknowledgements -- References -- 6 Theory of dipolar gases -- 6.1 The dipole-dipole interaction -- 6.2 Dipolar Bose-Einstein condensates -- 6.3 Dipolar gases in optical lattices -- 6.4 Conclusions -- References -- 7 Ultracold polar molecules -- 7.1 Motivation and challenges. 327 $a7.2 Making ultracold polar molecules -- 7.3 Characterizing the ultracold polar molecules -- 7.4 Ultracold chemistry, dipolar interactions, and reduced dimensionality -- Acknowledgements -- References -- 8 Ultracold Fermi gases as quantum simulators of condensed matter physics -- 8.1 Introduction -- 8.2 The non-interacting Fermi gas -- 8.3 Fermionic super.uidity and the BEC-BCS crossover -- 8.4 Probing the fermionic superfluid -- 8.5 Conclusion -- References -- 9 Competing instabilities in quench experiments with ultracold Fermi gases near a Feshbach resonance -- 9.1 Overview -- 9.2 Introduction -- 9.3 Linear response and collective modes -- 9.4 Feshbach resonance via pseudo-potentials -- 9.5 Application to pairing susceptibility -- 9.6 More on Stoner instability -- 9.7 Discussion -- 9.8 Concluding remarks -- Acknowledgements -- References -- 10 Anderson localization of ultracold atoms in a laser speckle -- 10.1 Anderson localization for the beginner -- 10.2 Ultracold atoms in optical speckle: a good candidate for the observation of Anderson localization -- 10.3 One-dimensional Anderson localization? -- 10.4 Direct observation of Anderson localized 1D wavefunctions -- 10.5 What happens beyond the 1D effective mobility edge? -- 10.6 Towards 2D and 3D experimental studies of AL: a quantum simulator with cold atoms -- Acknowledgements -- References. 330 $aThis book provides authoritative tutorials on the most recent achievements in the field of quantum gases at the interface between atomic physics and quantum optics, condensed matter physics, nuclear and high-energy physics, non-linear physics, and quantum information. 410 0$aLecture Notes of the les Houches Summer School Ser. 606 $aCold gases$vCongresses 606 $aNuclear physics$vCongresses 606 $aCondensed matter$vCongresses 615 0$aCold gases 615 0$aNuclear physics 615 0$aCondensed matter 676 $a530.43 701 $aSalomon$b C$g(Christophe)$0350046 701 $aShlyapnikov$b Georgy V$01814249 701 $aCugliandolo$b L. F$g(Leticia F.)$01814250 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910957625103321 996 $aMany-body physics with ultracold gases$94367971 997 $aUNINA