LEADER 02928nam 22005895 450 001 9910881098203321 005 20240818130242.0 010 $a9789819738274$b(electronic bk.) 010 $z9789819738267 024 7 $a10.1007/978-981-97-3827-4 035 $a(MiAaPQ)EBC31606740 035 $a(Au-PeEL)EBL31606740 035 $a(CKB)34075067500041 035 $a(DE-He213)978-981-97-3827-4 035 $a(EXLCZ)9934075067500041 100 $a20240818d2024 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aIntelligent Bridge Maintenance and Management $eEmerging Digital Technologies /$fby Gang Wu, ZhiQiang Chen, Ji Dang 205 $a1st ed. 2024. 210 1$aSingapore :$cSpringer Nature Singapore :$cImprint: Springer,$d2024. 215 $a1 online resource (475 pages) 225 1 $aSpringer Tracts in Civil Engineering,$x2366-2603 311 08$aPrint version: Wu, Gang Intelligent Bridge Maintenance and Management Singapore : Springer,c2024 9789819738267 327 $aIntroduction -- Intelligent Bridge Maintenance and Management System -- IoT Sensing Technology -- Bridge Inspection Automation -- Big Data Enabled Computating. 330 $aThis book provides a timely introduction to the methodology of Intelligent Bridge Maintenance and Management (IBM&M) and a comprehensive synthesis of emerging digital technologies for realizing IBM&M. The authors, who carry research, teaching, and consulting experience in the USA, Japan, and China, present the background, principles, methods, and application examples of essential IBM&M solutions in eight dedicated chapters. The digital technologies covered in this book include: ? Artificial intelligence, big data, machine learning, computer vision. ? Data fusion, 3D building information, digital twin modeling, virtual and augmented reality. ? Internet of things sensors, robotics including unmanned vehicles. The book targets the audience in the broader Bridge Engineering community, including academic researchers, students, bridge owners, and technology providers. 410 0$aSpringer Tracts in Civil Engineering,$x2366-2603 606 $aFacility management 606 $aBig data 606 $aInternet of things 606 $aFacility Management 606 $aBig Data 606 $aInternet of Things 615 0$aFacility management. 615 0$aBig data. 615 0$aInternet of things. 615 14$aFacility Management. 615 24$aBig Data. 615 24$aInternet of Things. 676 $a352.56 700 $aWu$b Gang$01354129 701 $aChen$b ZhiQiang$01765648 701 $aDang$b Ji$01765649 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 912 $a9910881098203321 996 $aIntelligent Bridge Maintenance and Management$94207486 997 $aUNINA LEADER 04652nam 22005653 450 001 9910957558303321 005 20231110214833.0 010 $a9781470470210$b(electronic bk.) 010 $z9781470451196 035 $a(MiAaPQ)EBC6939728 035 $a(Au-PeEL)EBL6939728 035 $a(CKB)21420569300041 035 $a(OCoLC)1306205295 035 $a(EXLCZ)9921420569300041 100 $a20220327d2022 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aMaximal Textrm {PSL}_2 Subgroups of Exceptional Groups of Lie Type 205 $a1st ed. 210 1$aProvidence :$cAmerican Mathematical Society,$d2022. 210 4$dİ2022. 215 $a1 online resource (168 pages) 225 1 $aMemoirs of the American Mathematical Society ;$vv.276 311 08$aPrint version: Craven, David A. Maximal Providence : American Mathematical Society,c2022 9781470451196 327 $aCover -- Title page -- Chapter 1. Introduction -- Chapter 2. Notation and Preliminaries -- Chapter 3. Maximal Subgroups -- Chapter 4. Maximal Subgroups and Subspace Stabilizers -- Chapter 5. Blueprint Theorems for Semisimple Elements -- 5.1. Preliminary Results -- 5.2. Determination of the Bounds for the Minimal Module -- 5.3. Consequences for Maximal Subgroups -- Chapter 6. Unipotent and Semisimple Elements -- 6.1. Actions of Unipotent Elements -- 6.2. Blueprints and Element Orders -- 6.3. Blueprints inside Subgroups of Type ? -- 6.4. Traces of Modules for \PGL? -- 6.5. The Graph Automorphism of ? -- 6.6. Rank-1 Subalgebras of the Lie Algebra -- Chapter 7. Modules for \SL? -- 7.1. Modules for \SL?(2^{ }) -- 7.2. Modules for \SL?(3^{ }) -- 7.3. Modules for \SL?( ) -- 7.4. Modules for \SL?( ^{ }) for ?5 and > -- 1 -- Chapter 8. Some \PSL?s inside ? in Characteristic 3 -- Chapter 9. Proof of the Theorems: Strategy -- Chapter 10. The Proof for ? -- 10.1. Characteristic 2 -- 10.2. Characteristic 3 -- 10.3. Characteristic At Least 5 -- Chapter 11. The Proof for ? -- 11.1. Characteristic 2 -- 11.2. Characteristic 3 -- 11.3. Characteristic At Least 5 -- Chapter 12. The Proof for ? in Characteristic 2 -- Chapter 13. The Proof for ? in Odd Characteristic: \PSL? Embedding -- 13.1. Characteristic 3 -- 13.2. Characteristic At Least 5 -- Chapter 14. The Proof for ? in Odd Characteristic: \SL? Embedding -- 14.1. Characteristic 3 -- 14.2. Characteristic At Least 5 -- Appendix A. Actions of Maximal Positive-Dimensional Subgroups on Minimal and Adjoint Modules -- Appendix B. Traces of Small-Order Semisimple Elements -- Bibliography -- Back Cover. 330 $a"We study embeddings of PSL2(pa) into exceptional groups G(pb) for G = F4, E6, 2E6, E7, and p a prime with a, b positive integers. With a few possible exceptions, we prove that any almost simple group with socle PSL2(pa), that is maximal inside an almost simple exceptional group of Lie type F44, E6, 2E6 and E7, is the fixed points under the Frobenius map of a corresponding maximal closed subgroup of type A1 inside the algebraic group. Together with a recent result of Burness and Testerman for p the Coxeter number plus one, this proves that all maximal subgroups with socle PSL2(pa) inside these finite almost simple groups are known, with three possible exceptions (pa = 7, 8, 25 for E7). In the three remaining cases we provide considerable information about a potential maximal subgroup"--$cProvided by publisher. 410 0$aMemoirs of the American Mathematical Society 606 $aLie groups 606 $aMaximal subgroups 606 $aExceptional Lie algebras 606 $aGroup theory and generalizations -- Abstract finite groups -- Simple groups: alternating groups and groups of Lie type$2msc 606 $aGroup theory and generalizations -- Linear algebraic groups and related topics -- Exceptional groups$2msc 615 0$aLie groups. 615 0$aMaximal subgroups. 615 0$aExceptional Lie algebras. 615 7$aGroup theory and generalizations -- Abstract finite groups -- Simple groups: alternating groups and groups of Lie type. 615 7$aGroup theory and generalizations -- Linear algebraic groups and related topics -- Exceptional groups. 676 $a512/.482 676 $a512.482 686 $a20D06$a20G41$2msc 700 $aCraven$b David A$0511976 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 912 $a9910957558303321 996 $aMaximal Textrm {PSL}_2 Subgroups of Exceptional Groups of Lie Type$94346576 997 $aUNINA