LEADER 12445nam 2200769Ia 450 001 9910956328303321 005 20200520144314.0 010 $a9786613618047 010 $a9781118148167 010 $a1118148169 010 $a9781280588211 010 $a1280588217 010 $a9781118148198 010 $a1118148193 010 $a9781118148181 010 $a1118148185 035 $a(CKB)2550000001228231 035 $a(StDuBDS)AH21625478 035 $a(MiAaPQ)EBC4471018 035 $a(MiAaPQ)EBC818478 035 $a(Au-PeEL)EBL818478 035 $a(CaPaEBR)ebr10503004 035 $a(CaONFJC)MIL361804 035 $a(OCoLC)778338963 035 $a(PPN)238730131 035 $a(Perlego)1002583 035 $a(EXLCZ)992550000001228231 100 $a20110527d2012 uy 0 101 0 $aeng 135 $aur||||||||||| 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 10$aDiode lasers and photonic integrated circuits /$fLarry A. Coldren, Scott W. Corzine, Milan L. Masanovic 205 $a2nd ed. 210 $aHoboken, N.J. $cWiley$d2012 215 $a1 online resource (xxiii, 709 p. )$cill 225 1 $aWiley series in microwave and optical engineering ;$v218 300 $aIncludes index. 311 08$a9780470484128 311 08$a0470484128 320 $aIncludes bibliographical references and index. 327 $aCover -- Title Page -- Copyright -- Contents -- Preface -- Acknowledgments -- List of Fundamental Constants -- Chapter 1 Ingredients -- 1.1 Introduction -- 1.2 Energy Levels and Bands in Solids -- 1.3 Spontaneous and Stimulated Transitions: The Creation of Light -- 1.4 Transverse Confinement of Carriers and Photons in Diode Lasers: The Double Heterostructure -- 1.5 Semiconductor Materials for Diode Lasers -- 1.6 Epitaxial Growth Technology -- 1.7 Lateral Confinement of Current, Carriers, and Photons for Practical Lasers -- 1.8 Practical Laser Examples -- References -- Reading List -- Problems -- Chapter 2 A Phenomenological Approach to Diode Lasers -- 2.1 Introduction -- 2.2 Carrier Generation and Recombination in Active Regions -- 2.3 Spontaneous Photon Generation and LEDs -- 2.4 Photon Generation and Loss in Laser Cavities -- 2.5 Threshold or Steady-State Gain in Lasers -- 2.6 Threshold Current and Power Out Versus Current -- 2.6.1 Basic P-I Characteristics -- 2.6.2 Gain Models and Their Use in Designing Lasers -- 2.7 Relaxation Resonance and Frequency Response -- 2.8 Characterizing Real Diode Lasers -- 2.8.1 Internal Parameters for In-Plane Lasers: áaiñ, ni, and g versus J -- 2.8.2 Internal Parameters for VCSELs: ni and g versus J, áaiñ, and am -- 2.8.3 Efficiency and Heat Flow -- 2.8.4 Temperature Dependence of Drive Current -- 2.8.5 Derivative Analysis -- References -- Reading List -- Problems -- Chapter 3 Mirrors and Resonators for Diode Lasers -- 3.1 Introduction -- 3.2 Scattering Theory -- 3.3 S and T Matrices for Some Common Elements -- 3.3.1 The Dielectric Interface -- 3.3.2 Transmission Line with No Discontinuities -- 3.3.3 Dielectric Segment and the Fabry-Perot Etalon -- 3.3.4 S-Parameter Computation Using Mason's Rule -- 3.3.5 Fabry-Perot Laser -- 3.4 Three- and Four-Mirror Laser Cavities -- 3.4.1 Three-Mirror Lasers. 327 $a3.4.2 Four-Mirror Lasers -- 3.5 Gratings -- 3.5.1 Introduction -- 3.5.2 Transmission Matrix Theory of Gratings -- 3.5.3 Effective Mirror Model for Gratings -- 3.6 Lasers Based on DBR Mirrors -- 3.6.1 Introduction -- 3.6.2 Threshold Gain and Power Out -- 3.6.3 Mode Selection in DBR-Based Lasers -- 3.6.4 VCSEL Design -- 3.6.5 In-Plane DBR Lasers and Tunability -- 3.6.6 Mode Suppression Ratio in DBR Laser -- 3.7 DFB Lasers -- 3.7.1 Introduction -- 3.7.2 Calculation of the Threshold Gains and Wavelengths -- 3.7.3 On Mode Suppression in DFB Lasers -- References -- Reading List -- Problems -- Chapter 4 Gain and Current Relations -- 4.1 Introduction -- 4.2 Radiative Transitions -- 4.2.1 Basic Definitions and Fundamental Relationships -- 4.2.2 Fundamental Description of the Radiative Transition Rate -- 4.2.3 Transition Matrix Element -- 4.2.4 Reduced Density of States -- 4.2.5 Correspondence with Einstein's Stimulated Rate Constant -- 4.3 Optical Gain -- 4.3.1 General Expression for Gain -- 4.3.2 Lineshape Broadening -- 4.3.3 General Features of the Gain Spectrum -- 4.3.4 Many-Body Effects -- 4.3.5 Polarization and Piezoelectricity -- 4.4 Spontaneous Emission -- 4.4.1 Single-Mode Spontaneous Emission Rate -- 4.4.2 Total Spontaneous Emission Rate -- 4.4.3 Spontaneous Emission Factor -- 4.4.4 Purcell Effect -- 4.5 Nonradiative Transitions -- 4.5.1 Defect and Impurity Recombination -- 4.5.2 Surface and Interface Recombination -- 4.5.3 Auger Recombination -- 4.6 Active Materials and Their Characteristics -- 4.6.1 Strained Materials and Doped Materials -- 4.6.2 Gain Spectra of Common Active Materials -- 4.6.3 Gain versus Carrier Density -- 4.6.4 Spontaneous Emission Spectra and Current versus Carrier Density -- 4.6.5 Gain versus Current Density -- 4.6.6 Experimental Gain Curves -- 4.6.7 Dependence on Well Width, Doping, and Temperature -- References. 327 $aReading List -- Problems -- Chapter 5 Dynamic Effects -- 5.1 Introduction -- 5.2 Review of Chapter 2 -- 5.2.1 The Rate Equations -- 5.2.2 Steady-State Solutions -- Case (i): Well Below Threshold -- Case (ii): Above Threshold -- Case (iii): Below and Above Threshold -- 5.2.3 Steady-State Multimode Solutions -- 5.3 Differential Analysis of the Rate Equations -- 5.3.1 Small-Signal Frequency Response -- 5.3.2 Small-Signal Transient Response -- 5.3.3 Small-Signal FM Response or Frequency Chirping -- 5.4 Large-Signal Analysis -- 5.4.1 Large-Signal Modulation: Numerical Analysis of the Multimode Rate Equations -- 5.4.2 Mode Locking -- 5.4.3 Turn-On Delay -- 5.4.4 Large-Signal Frequency Chirping -- 5.5 Relative Intensity Noise and Linewidth -- 5.5.1 General Definition of RIN and the Spectral Density Function -- 5.5.2 The Schawlow-Townes Linewidth -- 5.5.3 The Langevin Approach -- 5.5.4 Langevin Noise Spectral Densities and RIN -- 5.5.5 Frequency Noise -- 5.5.6 Linewidth -- 5.6 Carrier Transport Effects -- 5.7 Feedback Effects and Injection Locking -- 5.7.1 Optical Feedback Effects-Static Characteristics -- 5.7.2 Injection Locking-Static Characteristics -- 5.7.3 Injection and Feedback Dynamic Characteristics and Stability -- 5.7.4 Feedback Effects on Laser Linewidth -- References -- Reading List -- Problems -- Chapter 6 Perturbation, Coupled-Mode Theory, Modal Excitations, and Applications -- 6.1 Introduction -- 6.2 Guided-Mode Power and Effective Width -- 6.3 Perturbation Theory -- 6.4 Coupled-Mode Theory: Two-Mode Coupling -- 6.4.1 Contradirectional Coupling: Gratings -- 6.4.2 DFB Lasers -- 6.4.3 Codirectional Coupling: Directional Couplers -- 6.4.4 Codirectional Coupler Filters and Electro-optic Switches -- 6.5 Modal Excitation -- 6.6 Two Mode Interference and Multimode Interference -- 6.7 Star Couplers. 327 $a6.8 Photonic Multiplexers, Demultiplexers and Routers -- 6.8.1 Arrayed Waveguide Grating De/Multiplexers and Routers -- 6.8.2 Echelle Grating based De/Multiplexers and Routers -- 6.9 Conclusions -- References -- Reading List -- Problems -- Chapter 7 Dielectric Waveguides -- 7.1 Introduction -- 7.2 Plane Waves Incident on a Planar Dielectric Boundary -- 7.3 Dielectric Waveguide Analysis Techniques -- 7.3.1 Standing Wave Technique -- 7.3.2 Transverse Resonance -- 7.3.3 WKB Method for Arbitrary Waveguide Profiles -- 7.3.4 2-D Effective Index Technique for Buried Rib Waveguides -- 7.3.5 Analysis of Curved Optical Waveguides using Conformal Mapping -- 7.3.6 Numerical Mode Solving Methods for Arbitrary Waveguide Profiles -- 7.4 Numerical Techniques for Analyzing PICs -- 7.4.1 Introduction -- 7.4.2 Implicit Finite-Difference Beam-Propagation Method -- 7.4.3 Calculation of Propagation Constants in a z-invariant Waveguide from a Beam Propagation Solution -- 7.4.4 Calculation of Eigenmode Profile from a Beam Propagation Solution -- 7.5 Goos-Hanchen Effect and Total Internal Reflection Components -- 7.5.1 Total Internal Reflection Mirrors -- 7.6 Losses in Dielectric Waveguides -- 7.6.1 Absorption Losses in Dielectric Waveguides -- 7.6.2 Scattering Losses in Dielectric Waveguides -- 7.6.3 Radiation Losses for Nominally Guided Modes -- References -- Reading List -- Problems -- Chapter 8 Photonic Integrated Circuits -- 8.1 Introduction -- 8.2 Tunable, Widely Tunable, and Externally Modulated Lasers -- 8.2.1 Two- and Three-Section In-plane DBR Lasers -- 8.2.2 Widely Tunable Diode Lasers -- 8.2.3 Other Extended Tuning Range Diode Laser Implementations -- 8.2.4 Externally Modulated Lasers -- 8.2.5 Semiconductor Optical Amplifiers -- 8.2.6 Transmitter Arrays -- 8.3 Advanced PICs -- 8.3.1 Waveguide Photodetectors. 327 $a8.3.2 Transceivers/Wavelength Converters and Triplexers -- 8.4 PICs for Coherent Optical Communications -- 8.4.1 Coherent Optical Communications Primer -- 8.4.2 Coherent Detection -- 8.4.3 Coherent Receiver Implementations -- 8.4.4 Vector Transmitters -- References -- Reading List -- Problems -- Appendix 1 Review of Elementary Solid-State Physics -- A1.1 A Quantum Mechanics Primer -- A1.1.1 Introduction -- A1.1.2 Potential Wells and Bound Electrons -- A1.2 Elements of Solid-State Physics -- A1.2.1 Electrons in Crystals and Energy Bands -- A1.2.2 Effective Mass -- A1.2.3 Density of States Using a Free-Electron (Effective Mass) Theory -- References -- Reading List -- Appendix 2 Relationships between Fermi Energy and Carrier Density and Leakage -- A2.1 General Relationships -- A2.2 Approximations for Bulk Materials -- A2.3 Carrier Leakage Over Heterobarriers -- A2.4 Internal Quantum Efficiency -- References -- Reading List -- Appendix 3 Introduction to Optical Waveguiding in Simple Double-Heterostructures -- A3.1 Introduction -- A3.2 Three-Layer Slab Dielectric Waveguide -- A3.2.1 Symmetric Slab Case -- A3.2.2 General Asymmetric Slab Case -- A3.2.3 Transverse Confinement Factor, Gx -- A3.3 Effective Index Technique for Two-Dimensional Waveguides -- A3.4 Far Fields -- References -- Reading List -- Appendix 4 Density of Optical Modes, Blackbody Radiation, and Spontaneous Emission Factor -- A4.1 Optical Cavity Modes -- A4.2 Blackbody Radiation -- A4.3 Spontaneous Emission Factor, bsp Reading List -- Appendix 5 Modal Gain, Modal Loss, and Confinement Factors -- A5.1 Introduction -- A5.2 Classical Definition of Modal Gain -- A5.3 Modal Gain and Confinement Factors -- A5.4 Internal Modal Loss -- A5.5 More Exact Analysis of the Active/Passive Section Cavity -- A5.5.1 Axial Confinement Factor -- A5.5.2 Threshold Condition and Differential Efficiency. 327 $aA5.6 Effects of Dispersion on Modal Gain. 330 $a"Diode Lasers and Photonic Integrated Circuits, Second Edition provides a comprehensive treatment of optical communication technology, its principles and theory, treating students as well as experienced engineers to an in-depth exploration of this field. Diode lasers are still of significant importance in the areas of optical communication, storage, and sensing. Using the the same well received theoretical foundations of the first edition, the Second Edition now introduces timely updates in the technology and in focus of the book. After 15 years of development in the field, this book will offer brand new and updated material on GaN-based and quantum-dot lasers, photonic IC technology, detectors, modulators and SOAs, DVDs and storage, eye diagrams and BER concepts, and DFB lasers. Appendices will also be expanded to include quantum-dot issues and more on the relation between spontaneous emission and gain"--$cProvided by publisher. 410 0$aWiley series in microwave and optical engineering ;$v218. 606 $aSemiconductor lasers 606 $aIntegrated circuits 615 0$aSemiconductor lasers. 615 0$aIntegrated circuits. 676 $a621.382/7 686 $aTEC019000$2bisacsh 700 $aColdren$b L. A$g(Larry A.)$0502721 701 $aCorzine$b S. W$g(Scott W.)$0502722 701 $aMashanovitch$b Milan$f1974-$01814961 712 02$aEbscoHost (Servicio en línea) 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910956328303321 996 $aDiode lasers and photonic integrated circuits$94369227 997 $aUNINA